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Online Texts to Learn More About the 

Fundamentals of (Bio)Statistics

• OpenIntro Statistics by David Diez, Mine Centinkaya-

Rundel, Christopher Barr, and OpenIntro -

https://leanpub.com/openintro-statistics

• Introductory Statistics for the Life and Biomedical 

Sciences by Julie Vu, Dave Harrington, and 

OpenIntro- https://leanpub.com/biostat

*Minimum contribution for the above texts is $0 so you can access them for free.

https://leanpub.com/openintro-statistics
https://leanpub.com/biostat


PART 1.1
What is biostatistics?

Goal of statistics relative to the research path

Internal and external validity

Reliability



What is Biostatistics?

“Biostatistics is the discipline concerned with how we ought 
to make decisions when analyzing biomedical data. It is the 
evolving discipline concerned with formulating explicit rules to 
compensate both for the fallibility of human intuition in general 
and for biases in study design in particular.” (Berger VW, Matthews 
JR. What does biostatistics mean to us. Mens Sana Monogr. 2006;4(1):89–
103.)

“The branch of statistics that deals with data relating to living 
organisms” (Wikipedia)

….what is statistics?

“Statistics is the science of learning from data, and of 
measuring, controlling, and communicating uncertainty…” 
(Amstat.org)
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Fundamental principle

No statistical analysis, no matter how 

cleverly conducted, can rescue a poorly 

designed or conducted study.

Data analysis starts with the design 

of the study and the collection of the 

data.



Validity

• Internal validity: degree to which 

experiment identifies and measures the 

actual causal relationship in question.

• External validity: degree to which the 

experiment produces results that can be 

generalized to the entire population of 

interest 



Internal Validity

• Internal validity refers to how well an 

experiment is done, especially 

whether it avoids confounding and 

bias.

• The less chance for confounding and 

bias in a study, the higher its internal 

validity.



External Validity

• External validity refers to how well 
data and theories from one setting 
apply to another setting. 

• This question is usually asked about 
laboratory research: Does it apply in 
the everyday "real" world outside the 
lab? 



Reliability

• It refers to the consistency, stability 

and dependability of a measure or a 

result

• Examples

• Imaging results 

• Disease staging or classification

• Assay results



Reliability and Validity

Note: reliability is different from validity. A 

measure may be valid but not reliable and 

vice versa



PART 1.2
A first look at the data

Population and sample

Parameters and statistics

Data types

Descriptive Statistics

*I highly recommend reading Chapter 1 (Sections 1.2-1.3) in the freely 

available “Introductory Statistics for the Life and Biomedical Sciences” by Julie 

Vu, David Harrington, and OpenIntro: https://leanpub.com/biostat .

https://leanpub.com/biostat
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Population and Sample

• A population is the collection of all 

individuals (units) who are the target 

of a specific research question.

• A sample is a subgroup of individuals 

drawn from the population of 

interest.



















EXAMPLE

All stroke patients

Sample of

stroke patients



Parameters and Statistics

• A parameter is a numerical characteristic of 
a population (e.g. the average SBP of all 
stroke patients).

• We indicate parameters with Greek letters (m, 
s, q).

• A statistic is a numerical characteristic of a 
sample (e.g. the average SBP of a sample 
from all stroke patients).

• We indicate statistics with Latin letters ( ത𝑌, s).








m
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EXAMPLE

Population

Sample



Introduction to statistical data analysis

First, know your data!

Before you use complicated statistical 

tools to analyze your data and find your 

results you have to become familiar 

with the data.



Introduction to statistical data analysis

Descriptive statistics: 

A technique for summarizing and 

presenting data



Introduction to statistical data analysis

Inferential Statistics: 

A technique for reliably generalizing 

from a sample to the general population



















Data Types

Figure 1.8 from “Introductory Statistics for the Life and Biomedical Sciences” by Julie Vu, 

David Harrington, and OpenIntro: https://leanpub.com/biostat

https://leanpub.com/biostat


Categorical (Qualitative) Data Types

• Nominal scale: 

• The lowest measurement scale. 

• Un-ordinable.

• Cannot perform operations (e.g. gender, race, 
religion, eye color, possible genotypes at a 
particular locus)

• Ordinal scale: 

• Values are ordered on a rank scale. 

• Cannot perform operations (e.g. academic 
rank, education, stage or severity of disease) 



Numerical (Quantitative) Data Types

• Discrete scale:

• Values obtained by counting (e.g., number of hospital 

visits, number of children per family, number of 

participants in the CREiGS Short Course, number of 

COVID-19 cases in a particular region)

• Continuous scale: 
• Values obtained by measurement. Values can be ordered.

• Can theoretically take on infinite number of values. 

• Operations can be performed (e.g. age, weight, height, 

heart rate, BMI, glucose level, temperature)

Mayya, S. S., Monteiro, A. D., & Ganapathy, S. (2017). Types of biological variables. Journal of 

thoracic disease, 9(6), 1730. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5506151/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5506151/


Tools for data analysis: Descriptive statistics

Descriptive statistics allow us to reduce 

the space of the study data to a 

manageable dimension or reorganize it 

in a way that allows us to identify clear 

patterns. 



Tools for data analysis: Descriptive statistics

All statistical techniques that allow us to 

describe the sample 

1. Graphs (bar graphs, histograms, charts)

2. Frequency tables

3. Measures of Central tendency

4. Measures of Dispersion

5. Measures of Shape



Frequency Distribution

• The pattern of variation of a variable is called its 

distribution, which can be described both mathematically 

and graphically. 

• The distribution records all possible numerical values of a 

variable and how often each value occurs (its frequency). 



Continuous Measures - Notation

•Let’s denote a variable of interest (e.g. 

age or SBP) with Y

•Let Yi denote the value of the variable Y

in the i th individual in a population of N

individuals or in a sample of n

individuals.



Example

SBP in a sample of 10 patients

Y SBP

Y1 135

Y2 122

Y3 122

Y4 117

Y5 135

Y6 146

Y7 105

Y8 135

Y9 117

Y10 109



FREQUENCY DISTRIBUTION

SBP in a sample of 10 patients

SBP Frequency Relative

Frequency

Percent Cumulative 

Percent

105 1 0.1 10.0 10.0

109 1 0.1 10.0 20.0

117 2 0.2 20.0 40.0

122 2 0.2 20.0 60.0

135 3 0.3 30.0 90.0

146 1 0.1 10.0 100.0

total 10 1.00 100.0



FREQUENCY DISTRIBUTION

SBP in a sample of 10 patients
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Central Tendency

• Central tendency is a statistical measure 

that identifies a single score as 

representative for the entire distribution.

• Measures of central tendency are

• Mode

• Median

• Mean



Mode

• Is the value in the distribution that occurs more 
frequently.

• If all the values are different there is no mode.

• A distribution may have more than one mode 
(e.g., bimodal distribution).

• A simple way to find the mode is to plot the 
frequency distribution and look for the tallest 
“bump.”



Mode

SBP in a sample of 10 patients

SBP Frequency Percent

105 1 10.0

109 1 10.0

117 2 20.0

122 2 20.0

135 3 30.0

146 1 10.0



Median

The value that divides the frequency distribution of 

the ordered values exactly in half
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Properties:

For a given set of data there is only one median

The median is easily understood and easy to compute

The median is NOT affected by extreme values 



Median

SBP in a sample of 10 patients

Y SBP

Y(1) 105

Y(2) 109

Y(3) 117

Y(4) 117

Y(5) 122

Y(6) 122

Y(7) 135

Y(8) 135

Y(9) 135

Y(10) 146
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Arithmetic Mean

Is the “center of gravity” of the distribution
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Properties:

1. For a given set of data there is only one arithmetic mean

2. The arithmetic mean is easily understood and easy 

to compute

3. Each and every value in a sample contributes to the mean 
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Mean
SBP in a sample of 10 patients

Y SBP

Y1 135

Y2 122

Y3 122

Y4 117

Y5 135

Y6 146

Y7 105

Y8 135

Y9 117

Y10 109
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SUMMARY

For our sample of 10 patients:

• Mode = 135

• Median = 122

• Mean = 124.3
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Dispersion

• Variability provides a quantitative 

measure of the degree to which 

scores in a distribution are spread 

around or clustered together.

• One of the goals of statistical analysis 

is to understand variability.



Variance and Standard Deviation

Variance

Standard Deviation



Other measures of dispersion

Inter-quartile range (IQR)

I Y YR  75 25

Range

R Y Y max min



SUMMARY

For our sample of 10 patients:

• Mode = 135

• Median = 122

• Mean = 124.3

• Variance = 170.9

• St. Dev. = 13.07

• IQR = 135-117 = 18

• Range = 146-105 = 41
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Measures of shape

Skewness

• A measure of symmetry. 

• Can be positive or negative

Kurtosis

• A measure of the heaviness of the tails of a 
distribution

Both measures are independent of the location and 
scale parameters



Shape of a distribution



END OF PART ONE
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PART 2.1
Introduction to Probability

I highly recommend that you read Chapter 2 of “Introductory Statistics for the 

Life and Biomedical Sciences” by Julie Vu, David Harrington, and OpenIntro: 

https://leanpub.com/biostat

https://leanpub.com/biostat


Probability Basics

• Q1: If we were to toss a coin, what’s the probability of 

getting heads?

• Q2: If each member of a heterosexual couple have one 

wild-type copy and one mutated copy of CFTR (i.e., they 

are both Cystic Fibrosis carriers), what is the probability 

that a child of this couple will be affected by Cystic 

Fibrosis?



Definitions
• Sample Space – set of all possible outcomes

• Q1: Heads, Tails

• Event – set of outcomes of interest

• Q1: Getting Heads

• Q2: Child is Affected

• Probability of an Event – Relative frequency of the outcome(s) of interest
over an indefinitely large (or infinite) number of trials.

• Empirical probabilities rely on finite set of data

• Imagine tossing a coin 10,000 times and getting 4950 Heads + 5050 
Tails

• Pr(Getting Heads) = 
no. of Heads

total no. of outcomes
=

4950 Heads
4950 Heads + 5050 Tails

= 
0.495

• General Probability Rule

• The probability of event E, denoted by Pr(E) always satisfies 0 ≤ Pr(E) ≤ 1.

Figure 2.1: Pattern of CF inheritance for a child of two unaffected carriers from “Introductory Statistics for the 

Life and Biomedical Sciences” by Julie Vu, David Harrington, and OpenIntro: https://leanpub.com/biostat

Q2

https://leanpub.com/biostat


The Complement

• We define the complement of an event E as all of the 

sample space that does not include event E. Denoted by:

• E’

• Ec

• ഥE

• In probabilistic terms:

• Pr(ഥE) = 1 – Pr(E)

• Pr(E) = 1 – Pr(ഥE) 

E
ഥE



Visualization 1

A
B

In this diagram, events A and B are mutually exclusive. 

Based on the diagram above, how would you define 

mutual exclusivity.

Sample Space S



Mutual Exclusive Events

• If two events cannot happen at the same time, they are 

mutually exclusive.

• If you flip one coin, you cannot get Heads and Tails at the same 

time.

• Probability Rules for Mutual Exclusivity

• Pr(A or B) = Pr(A ∪ B) = Pr(A) + Pr(B)

• Pr(A and B) = Pr(A ∩ B) = 0



Challenge

Based on this diagram, would you consider A and B 

to mutually exclusive events?



Challenge cont’d

• Based on your decision as 

to whether A and B are 

mutually exclusive events, 

how would you calculate 

the Pr(A ∪ B) ?



Independence and Probability

• If A does not depend on B, then events are independent.
• Hypertensive status of Parent 1 independent of hypertensive status of 

Parent 2 only if…

• Multiplication Law for Independence
• Pr(A∩B) = Pr(A) x Pr(B)

• When no. events (k) > 2 then general law
• Pr(A1 ∩ A2 ∩ … ∩ Ak) = Pr(A1) x Pr(A2) x … x Pr(Ak)

• Addition Law for Independence
• Pr(A∪B) = Pr(A) + Pr(B) x Pr(ഥA)

• Pr(A or B) = Pr(A occurs) + Pr(B occurs and A does not occur)

• Law does not apply for Dependent events
• Pr(A∩B) ≠ Pr(A) x Pr(B)



Independence and Probability

• Example revisited:
• Hypertension screening program in 2-parent households

• Event Assignment

• A = Parent 1 DBP ≥ 95

• B = Parent 2 DBP ≥ 95 

• Suppose the following:

• Pr(A) = 0.10

• Pr(B) = 0.20

• Challenge: What do we mean when we ask for the Pr(A∩B)?

• Challenge: Assume that Pr(A∩B) = 0.05.  Are the two events 

independent?



Conditional Probability

• Suppose we are conducting breast cancer screening among 
older women.

• Let A = {has breast cancer} and B = {mammogram+}

• We are interested in the probability that a woman has breast 
cancer given she has a positive mammogram.

• When we first condition on the occurrence of B and then 
assess the probability of A, we are computing a conditional 
probability.

• Conditional Probability denoted as Pr(A|B).



Conditional Probability

• Mathematically:Pr A B =
Pr(A∩B)
Pr(B)

• If A and B are independent events, Pr A B =Pr(A)
• How would you interpret this law for the non-biostatistician?

• Challenge: What is the complement of Pr(A|B)?

• Is that the same as Pr(B|A)?



Conditional Probability

• We can derive Pr(B|A) from the Pr(A|B).

• Three step process:
• First: Define Pr(B|A) using our knowledge about conditional 

probabilities.

• Second: We can obtain the Pr(B∩A) from our definition of Pr(A|B)?

• Note that Pr(B∩A) = Pr(A∩B).

• Third: We define Pr(A) with respect to two intersections.

• Pr(A∩B) and Pr(A∩ ഥB)

• Known as the Total Probability Rule.



Bayes’ Theorem

• Once we put our three steps together, we will have 

derived Bayes’ Theorem.

Pr B A =
Pr(B∩A)

Pr(A)

Pr B A =
Pr A B x Pr(B)

Pr A∩B +Pr(A∩ഥB)

Pr B A =
Pr A B x Pr(B)

Pr A|B xPr(B)+Pr A ഥB xPr(ഥB)

Pr A B =
Pr(A∩B)

Pr(B)

Total 

Probability 

Rule



Probability Challenge

• If the sensitivity of a screening test is 70%, the 

specificity of the test is 95%, and the prevalence 

of the disease of interest in the population is 10%, 

what is the positive predictive value of the test? 



PART 2.2
Probability Distributions

I highly recommend that you read Chapter 3 of “Introductory Statistics for the 

Life and Biomedical Sciences” by Julie Vu, David Harrington, and OpenIntro: 

https://leanpub.com/biostat

https://leanpub.com/biostat


Probability Distributions

• For statistical inference, we often make the following 

assumption:

• Data are a random sample selected from a population and that 

the distribution of the population has a known theoretical 

form. 

• We call this distribution a frequency or probability distribution.

• A probability distribution is used to calculate the theoretical 

probability of different values occurring in the population.



Types of probability distributions

• Many types of probability distributions and which ones we 

use depend on the type of data with which we are 

working.

• Discrete distributions can model discrete data (e.g. 

number of heart attacks)

• Continuous distributions can model continuous data 

(e.g. serum cholesterol levels)



Properties of Discrete Probability 

Distributions
• The probability that a random variable X can take a 

specific value x is Pr(X = x) sometimes denoted as p(x).

• p(x) is non-negative.

• The sum of p(x) over all possible values of x is 1, where: 



x=0

x=∞

p x = 𝟏 .

• Recall: 0 ≤ p(x) ≤ 1.



Properties of continuous probability 

distributions
• The probability that x is between two points 

a and b is 

• It is non-negative

• The integral of the probability function is 1, 

that is,  
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Consider this scenario

• We have 3 unrelated patients have been prescribed, by 

their neurologist, to take an experimental drug X. Any 

individual taking drug X has a 50% chance of having a 

seizure.

• 1 out of the 3 patients has a seizure.

• How can we determine the probability of our outcome in 

this scenario?



Introduction to the Binomial distribution 

(a common distribution for binary data)

• A Bernoulli random variable, X, takes on only two values: 

0 and 1, with probabilities 1-p and p, respectively.

• A patient either has a seizure or does not have a seizure.

• Pr(Seizure) = p and Pr(Seizure) = Pr(No Seizure) = 1 - p

• Usually Bernoulli random variables are used to indicate a 

dichotomous outcome for health research (e.g. success 

or failure of an intervention, staying alive or dying, 

disease remission or relapse, etc.)



The Binomial distribution

• The sum of Bernoulli random variables gives rise to the 
Binomial distribution

• n independent trials (n patients prescribed to drug X).

• Each trial has a dichotomous outcome (e.g.“seizure” or “no seizure”)

• The probability of “success”, p, remains the same for each trial.

• Express getting x “successes” in n trials mathematically as:

• Where 𝑛
𝑥

is the no. of ways you can have x successes and (n – x) 

failures

xnx pp
x

n
xX 
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Back to our prior binomial scenario

• Example for determing 𝑛
𝑥

• 3 unrelated patients prescribed to drug X (n=3)

• Define Seizure as a success (1) and No Seizure as a failure (0)

• How many ways can we be successful once (x = 1) in the three 

trials?

• 1 0 0

• 0 1 0

• 0 0 1

• Calculated mathematically as:

n!
x! n −x ! =

3 x 2 x 1
1 x (2 x 1)

= 3



Binomial scenario cont’d

• Now lets find the probability of 1 out of 3 patients having a 

seizure

375.0)5.01(5.0
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)1Pr( 131 
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The Binomial distribution

Properties

• Has two parameters π and N

• Has mean m=Nπ

• Has variance s2=Nπ(1-π)



Consider this scenario…

 Prior research has posited that the amount of 

time in a day that children spend in the upright 

position is distributed normally and that the 

average time spent in an upright position is about 

5.4 ± 1.3 hours, on average. 

 How can we use this information to determine 

the probability that a randomly selected child 

spends less than 5 hours in the upright position?



Introduction to the Normal Distribution 

(a common continuous distribution)

A continuous random variable Y has a Normal Distribution function N(m, 
s) if

22 2/)(

22

1
)( sm

s

 yeyf

Properties:

1. Bell shaped

2. Symmetric around the mean m

3. Mean, median and mode coincide

4. Total area under the curve=1

5. Completely determined by parameters m and s
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Normal Distribution

68.26%

95.44%

99.74%



Link between binomial and normal 

distributions
As n (number of trials) increases the Binomial 

distribution converges to the Normal Distribution.



Standard Normal Distribution

• The Normal Distribution function is quite common but very 

complicated.

• To ease the complexity, we can transform any N(𝝁, 𝝈) 

into the Standard Normal Distribution.

• The Standard Normal Distribution is a special Normal 

distribution with 𝝁 = 𝟎 and 𝝈 = 𝟏.

• There are known probabilities associated with any value 

under the N(0,1).



Standard Normal Distribution

If  Y~N(m,s2) then to standardize Y we do the following,

Z = 
(𝑌−𝜇)

𝜎
~ N(0,1)

1. Has mean m = 0 and variance s2 = 1

2. It is tabulated

3. P(-a ≤ Z ≤ a) = P(Z ≤ a)-P(Z ≤ -a)

4. By symmetry: P(Z ≥ a)=P(Z ≤ -a)

5. By sum to 1 property: P(Z ≥ a)=1- P(Z < a)



Standard Normal Distribution



Back to our prior scenario
The amount of time in a day children spend in the upright position (X) is 

distributed normally with mean=5.4 hours and standard deviation = 1.3 

hours.

1. What is the probability that a randomly selected child spends less 

than 5 hours in the upright position in 24 hours?

• X~N(5.4, (1.3)2)     

• thus,   Z=
5−5.4
1.3

~ N(0,1)

• P(X<5) = P Z<
5−5.4
1.3

= P(Z<-0.31) = 0.3783

*Note that the probabilities for most common distributions including the standard normal 

distribution can be obtained using most statistical softwares (R, Python, SAS, etc.)



END OF PART TWO
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PART 3.1
Point estimates and confidence intervals

I highly recommend that you read Chapter 5 of “Introductory Statistics for the 

Life and Biomedical Sciences” by Julie Vu, David Harrington, and OpenIntro: 

https://leanpub.com/biostat

https://leanpub.com/biostat


What is Statistical Inference?

Statistical inference allows to draw conclusions 

based on observed data.

A generalization made about a larger group or 

population from the observation of a sample of that 

population.

Note that this is inevitably an imprecise process…

86



Inference from the sample
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Sample

Population

Inference
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Statistical inference

•Two Approaches:

• Estimation (point and interval estimation)

• Hypothesis Testing

88



Estimation: Underlying Idea

We are interested in the value of a specific 

parameter in the population (e.g. mean cholesterol 

level in hypertensive patients), but we can only 

observe a small portion of the whole population 

(the sample)

Goal

To give the most precise estimate of the 

parameter of interest by looking at the sample

89



Point Estimates

• One way to make inference about a population 

parameter is to use the sample point estimate of 

that parameter

• Point estimates: summary statistics from the 

sample that are used to estimate the parameter 

of interest.

ഥ𝒙 → 𝝁
𝒔 → 𝝈
𝒑 → 𝝅

90



Example

We are interested in the proportion of time in a day 

children spend in the upright position.

In a random sample of 10 children selected from 

the larger population we find that the mean time 

children in the sample spend in the upright position 

is = 3 hours.

We could at this point conclude that on average 

children spend 3 hours a day in the upright 

position.

91



The truth is…

We do not know what the mean number of 

hours children spend in the upright position is. 

Therefore, we try to “guess” it by looking at a 

sample from this population and making 

inference from this sample.

During this process we aim at:

1.Giving the most precise estimate of that mean

2.Making the smaller error possible in stating 

our estimate is the true mean

92



Can we do better than that?

93



Recall
• The distribution of a statistic calculated from a sample 

drawn a random from the population of interest is 

called the statistic’s sampling distribution

• The sampling distribution of the sample mean is (by 

virtue of the Central Limit Theorem) distributed as 

Normal with mean equal to the population mean m and 

variance equal to s2/n

• Therefore, we can make inference about the mean of 

the population using the distribution of the sample 

mean

94



Why is this important?
Because we want to answer questions like:

If we draw a random sample of n units from the population 

of interest, what is the probability that the mean of this 

sample will be between two reasonable values?

Given an unknown parameter of interest in the population, 

with what precision can we estimate it from a random 

sample of size n?

If we draw a random sample of size n, what is the 

probability that that sample comes from a population with 

mean m?
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Interval estimates

• A point estimate consist of a single value that is 

used to estimate the parameter of interest (say, 

the mean)

• An interval estimate gives us a range of plausible 

values of the population parameter.  

• The confidence level describes the uncertainty 

associated with the sampling method.
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Interval Estimation

• Add more information to our point estimate.

• Interval estimates give us a range of 

plausible values for the population 

parameter.  
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Interval estimates

• Consist of two numerical values defining an 

interval that, with a specific degree of 

confidence, we feel includes the parameter 

of interest

• A 100(1-a)% confidence interval for a 

parameter q is a random interval, based on 

the data, such that

P(L ≤ q ≤ U) = 1- a
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Degree of confidence

• The degree of confidence is determined by us 

through a parameter called a

• A 100(1-a)% confidence interval for a parameter q is a 

random interval, based on the data, such that:

Pr(L ≤ q ≤ U) = 1- a ,

Where: L = lower limit, U = upper limit

a is our preset confidence level.

99



Degree of confidence

If we keep drawing samples of 

the same size, calculate the 

sample statistic and build a 

confidence interval, 1- a% will 

contain the true parameter, a% 

of them will not.

Pr(L ≤ q ≤ U) = 1- a 

q

For a0.05 or 5%, 95% of the 

intervals will contain the true 

parameter, 5% of them will not.
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Form of a confidence interval

P o in t

E s t im a t e









 





















Confidence

Level

s e of

estimate

. .

Note:

1.The point estimate is a statistic calculated 

from the sample (e.g. the sample mean)

2.The confidence level depends on the sampling 

distribution of the statistic 
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Using the Normal Distribution

0
Z value-Z value

1-1

Z~N(0,1)

(1- a)
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Confidence interval for the sample mean

A (100)(1-a)% Confidence interval for the sample 

mean has the form

Recall:

),(~
2

n
NX

s
m

n
zXeszX

X

s
aa )2/1()2/1( ..  
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Interpretation

• Probabilistic: In repeated sampling from a normally 

distributed population 100(1-a)% of the intervals of 

the form                    will in the long run contain the 

true value of m

• Practical: We are 100(1-a)% confident that the 

computed interval                     contains the 

population mean m

n
zX

s
a )2/1( 

n
zX

s
a )2/1( 
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Wrong Interpretation!

There is a 100(1-a)% chance that the population 

parameter falls between the limits of the confidence 

interval. This is incorrect. The population parameter, 

is a constant, not a random variable. Therefore we 

cannot make probabilistic statements about it.
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Note

•The confidence interval is symmetric 

around the sample mean, not around 

the population mean. 

• In fact, the confidence interval may not 

contain the population mean.
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What if we do not know s2?

• When the standard deviation of the population s is not 

known (most times) we can use its estimate from the 

sample s

• If n is large then we can use the normal distribution to 

determine the confidence level

• The formula for a 100(1-a)% CI for the population mean 

then becomes:

n

s
zX )2/1( a
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What if we do not know s2?

• When n is small (<30)

• We use the Student’s t-distribution to determine the 

confidence level

• The formula for a 100(1-a)% CI for the population mean 

then becomes:
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Notes
• We are not restricted to calculating 95% 
confidence intervals.  We can calculate 90% 
confidence intervals, 99% confidence intervals, 
etc.

• The higher the desired confidence level the 
wider will be the confidence interval

• The smaller the sample size, the wider the 
confidence interval
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PART 3.2
Fundamentals of hypothesis testing

I highly recommend that you read Chapter 5 of “Introductory Statistics for the 

Life and Biomedical Sciences” by Julie Vu, David Harrington, and OpenIntro: 

https://leanpub.com/biostat

https://leanpub.com/biostat


Example

• There is reason to believe that the average cholesterol 

level in children whose father died of heart disease is 

different than that of the general children population, 

which is claimed to be 160 mg/dL.

Data collection

• A sample mean of 177 mg/dL is observed in a random 

sample of 25 children whose fathers died of heart 

disease. 

Question:

• Do children whose father died of heart disease have the 

same total cholesterol level as children in the general 

population?
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Hypothesis testing approach

• Instead of using the sample to estimate the 

unknown population parameter (with some 

precision) we first make a (smart) guess of what 

the value of the parameter may be and then we 

use the sample to determine how good our 

guess is.

• We call the null hypothesis (H0) the statement 

that we want to test or the value of the parameter 

under our guess
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Hypothesis Testing

• Does the information we obtained through our 
sample support the claim/hypothesis about the 
parameter?
• What is the probability of observing a sample mean of 

177 mg/dL, if the sample indeed comes from a 
population with mean µ = 160 mg/dL?

• Hypothesis testing is a method for testing a
claim or hypothesis about a parameter in a 
population, by analyzing data from a random 
sample.
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"... the null hypothesis is never proved 

or established, but is possibly 

disproved, in the course of 

experimentation. Every experiment 

may be said to exist only to give the 

facts a chance of disproving the null 

hypothesis." 

R. A. Fisher*
*Note that while I acknowledge Fisher’s contributions to the 

field of statistics, I vehemently oppose his support of racism 

and eugenics.
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Elements of hypothesis testing

• Random sample: a subset of units form a 

population such that each unit has the 

same probability of being selected

• Null hypothesis H0: A hypothesis about a 

population (or parameter) of interest, 

generally chosen to represent the “status 

quo” (the default, no change, no difference)
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Elements of hypothesis testing

• Alternative hypothesis HA: Hypothesis 

specifying something different than the null

• Test statistic: A decision rule for choosing 

between H0 and HA

• Error probabilities: The probability of 

making the right (or wrong) decision about 

the parameter of interest
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General form of set of hypothesis

Let q be the (unknown) parameter of interest (e.g. mean, 

variance, risk ratio, odds ratio, effect size etc.). We set our 

hypothesis as

H0 : q = q0 H0 : q ≥ q0 H0 : q ≤ q0

HA : q ≠ q0 or HA : q < q0 or HA : q > q0

The null and alternative hypothesis are ALWAYS 

complementary and mutually exclusive.
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The outcome of a statistical test can be either

• “Reject H0 in favor of H1” 

or 

• “Fail to reject H0”.  

NOTE: If we fail to reject the null hypothesis, it does not 

mean that the null hypothesis is true or correct.  It just 

means that, based on the data, we do not have sufficient 

evidence to support the claim stated in the alternative 

hypothesis.
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Different outcomes of hypothesis testing

• We fail to reject H0 when H0 is really true.

• We fail to reject H0 when HA is really true.

• We reject H0 when H0 is really true.

• We reject H0 when HA is really true.
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Error probabilities
a = Type I error: the probability of rejecting the 
null hypothesis when it is actually true

b = Type II error: the probability of accepting the 
null hypothesis when it is false

1-b= Power: the probability of correctly rejecting 
the null hypothesis

a is also called the significance level of the test 
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H0 is true H1 is true

Accept Null 

Hypothesis
Right decision

Wrong decision

Type II Error

Reject Null 

Hypothesis

Wrong decision

Type I Error
Right decision
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Decision Rule

• Logic: reject the null hypothesis if the 

sample data are not consistent with the null 

hypothesis. 

• Our sample data is not consistent with null 

hypothesis if our test statistic has a very low 

chance of occurring if the null hypothesis is true

123



The P-value

• The p-value is the conditional probability of obtaining a 

value of the test statistic as extreme or more extreme than 

the one observed, under the null hypothesis.

test statistic 

H0
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Remarks

• We cannot control both a and b. 

• A common strategy is to fix a at an acceptable 

level and then choose a test procedure that 

maximizes the power.

• For fixed a the power of the test can be increased 

by increasing the sample size

• For fixed sample size reducing a will reduce the 

power of the test
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Example

• Infant blood pressure (BP) was collected during the first 

week of life in the newborn nursery. One question is 

whether the level of consciousness of the infant affect 

BP?

• We have the following result for the SBP of the first week 

for two different group of infants:

Level of 

consciousness

n Mean Sd

Quiet sleep 64 81.9 9.8

Awake and quiet 175 86.1 10.3
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Assumptions

• Two sample test of means 

• The samples consist of independent observations 

drawn at random from the respective populations of 

interest.

• The two samples are independent from each 

other.

• The samples are drawn from normally distributed 

populations.

• The two populations have equal variance.
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Test Statistic (Equal Variance)

• The quantity Sp is called the pooled standard error and 

is a weighted average of the estimated variances of the 

two populations (assumed to be equal).
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Test Statistic for infant BP example
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Decision rule

FAIL TO 

REJECT H0

REGION

1.97-1.97
t(df=237)

t = -2.83
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Decision and Conclusion

• Since the test statistic exceeds the critical value 

for a=0.05 we reject the null hypothesis that the 

BP of infants with different level of consciousness 

is equal.

• Our sample does not support the hypothesis that 

blood pressure is the same in infants with different 

level of consciousness
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Equal Variance Assumption

• The equal variance assumption allowed us to calculate 
the pooled standard deviation

• In the previous example, we assumed that the population 
variances were equal given the similarity between the 
sample standard deviations/variances of each group.

• However we usually need to test whether the two 
groups meet the equal variance assumption.
• There is a specific test (the F test) that tells you whether we are 

meeting this assumption.

• If you fail to meet the equal variance assumption, you will need to 
conduct a two-sample test of means assuming unequal variance.
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Test for Equal Variance

• A rigorous way to make sure the equal variance 

assumption is met is to test the hypothesis

H0 : s2
1 = s2

2 vs.   HA : s2
1 ≠ s2

2

• If the F test for variance is not significant the null 

hypothesis of equality of variances cannot be rejected

• We then proceed and calculate the pooled variance

• If the F test for variance is significant we reject the null 

hypothesis of equality of variance

• We cannot assume that the two populations have equal variance

• We cannot calculate the pooled variance
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Two Sample Tests: Unequal Variance

• When we cannot assume equal variance between two 

populations we must use a different test statistic that 

takes into account both sample variances

• This test statistic does NOT follow the t-Distribution
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• What if the groups are not independent?

• Matched pairs

• Before/After experiments

• Repeated tests

• Need to take into account the correlation between 

samples

Paired Comparisons
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Example

IDEA: A high energy snack may increase brain 
performance. 

HYPOTHESIS: Students perform differently if they eat a 
high energy snack.

EXPERIMENT: 10 students were asked to solve a set of 
math problems on an empty stomach. Two days later the 
same students were asked to solve another set of math 
problems after eating a high energy snack. Time to 
complete the test was recorded both times.

• RESULTS: 

• With energy snack: 
• Scores = 72, 82, 93, 65, 76, 89, 81, 58, 95, 91

• Without energy snack:
• Scores = 75, 79, 84, 71, 82, 91, 85, 68, 90, 92
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Different approach from two sample test

Snack   No Snack

72 75

82 79

93 84

65 71

76 82

89 91

81 85

58 68

95 90

91 92

ҧ𝑥1 ҧ𝑥2
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Difference with two sample test

Snack   No Snack

72 75

82 79

93 84

65 71

76 82

89 91

81 85

58 68

95 90

91 92

ҧ𝑥1 ҧ𝑥2

HA: 𝜇1 ≠ 𝜇2 or 𝜇1 − 𝜇2 ≠ 0

Snack No Snack Score Difference  

72 75 -3

82 79 3

93 84 9

65 71 -6

76 82 -6

89 91 -2

81 85 -4

58 68 -10

95 90 5

91 92 -1

ഥ𝐷

HA : md ≠ 0
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Example: Paired Comparisons

• Interested in the individual differences

H0 : md = 0

HA : md ≠ 0

Where md represents the mean of all 
differences Yi

(1)-Yi
(2).
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Test statistic

• Note 1: n here is the number of pairs, not 

the total number of subjects

• Note 2: This is in practice a one sample 

test on the differences Yi
(1)-Yi

(2).
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Test statistic

Conclusion?

Does getting a high energy snack make students 

perform differently? We have insufficient evidence to 

suggest that students perform differently.

P-value = 0.2142
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END OF PART THREE
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PART 4.1
Introduction to the analysis of categorical data

Measures of association

I highly recommend that you read Chapter 8 of “Introductory Statistics for the Life and 

Biomedical Sciences” by Julie Vu, David Harrington, and OpenIntro: 

https://leanpub.com/biostat

https://leanpub.com/biostat


Analysis of Categorical Response Data

▶ Analysis of categorical data is primarily focused on 
analyzing how categorical response variables (i.e., 
outcomes/dependent variables) are influenced by 
predictor variables.

– Categorical restriction only pertains to response 

variable.

– While we do have categorical response variables that 

have >2 levels, this lecture will be focused on 

binary/dichotomous response variables.
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Describing bivariate relationships between two binary 

categorical variables

▶ Motivating Example: 

– The Physician’s Health Study was a 5-year randomized 

study of whether regular aspirin intake reduces mortality 

from cardiovascular disease. Every other day, physicians 

took either one aspirin or placebo. Of the 11,034 

physicians taking placebo, 189 suffered a heart attack, as 

compared to 104 of the 11,037 physicians taking aspirin.
NEJM 318: 262-264, 1988. 
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Contingency Tables

▶ When we work with a single categorical variable, we can 
easily count the number of observations in each 
category and compute sample proportions.

▶ However, when we have ≥2 categorical variables, we 
need an effective way to display all possible 
combinations of outcomes along with their 
corresponding frequencies and probabilities.

▶ A table that cross-classifies two or more categorical 
variables to show all possible combinations of outcomes 
is a contingency table.
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Contingency Tables: Two-way Contingency Table

The Physician’s Health Study was a 5-year randomized study of whether 

regular aspirin intake reduces mortality from cardiovascular disease. Every 

other day, physicians took either one aspirin or placebo. Of the 11,034 

physicians taking placebo, 189 suffered a heart attack, as compared to 

104 of the 11,037 physicians taking aspirin. NEJM 318: 262-264, 1988. 
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Two-way Contingency Table 

MI 

(Y=1)

No MI 

(Y=0)

Aspirin

(X=1)

104 10,933 11,037

Placebo 

(X=0)

189 10,845 11,034

293 21,778 22,071



Contingency Tables: Two-way Contingency Table
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MI 

(Y=1)

No MI 

(Y=0)

Aspirin

(X=1)

104 10,933 11,037

Placebo 

(X=0)

189 10,845 11,034

293 21,778 22,071

General Layout of the Contingency Table

Let I be the no. of categories for the row variable.

Let J be the no. of categories for the column variable.

-Let ni. be the marginal frequency of people with the ith outcome.

-Let n.j be the marginal frequency of people with the jth outcome.

-Let nij be the joint frequency of people with the ith and jth outcomes.

-Let n.. be the total sample size.



Contingency Tables: Two-way Contingency Table
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MI 

(Y=1)

No MI 

(Y=0)

Aspirin

(X=1)

104 10,933 11,037

Placebo 

(X=0)

189 10,845 11,034

293 21,778 22,071

General Layout of the Contingency Table

Let I be the no. of categories for the row variable.

Let J be the no. of categories for the column variable.

-Let ni. be the marginal frequency of people with the ith outcome.

-Let n.j be the marginal frequency of people with the jth outcome.

-Let nij be the joint frequency of people with the ith and jth outcomes.

-Let n.. be the total sample size.

MI 

(Y=1)

No MI 

(Y=0)

Aspirin

(X=1)
n11 n12 n1.

Placebo 

(X=0)
n21 n22 n2.

n.1 n.2 n..
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MI 

(Y=1)

No MI 

(Y=0)

Aspirin

(X=1)

104 10,933 11,037

Placebo 

(X=0)

189 10,845 11,034

293 21,778 22,071

1. What is the probability of MI? 

2. What is the probability of having an MI and taking placebo?

3. What is the probability that aspirin-takers will have an MI?

4. What is the probability that placebo-takers will have an MI?

MI 

(Y=1)

No MI 

(Y=0)

Aspirin

(X=1)
n11 n12 n1.

Placebo 

(X=0)
n21 n22 n2.

n.1 n.2 n..
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MI 

(Y=1)

No MI 

(Y=0)

Aspirin

(X=1)

104 10,933 11,037

Placebo 

(X=0)

189 10,845 11,034

293 21,778 22,071

1. What is the probability of MI? 

Pr(Y=1) = 
𝒏.𝟏

𝒏..
=

𝟐𝟗𝟑

𝟐𝟐,𝟎𝟕𝟏
= 𝟎. 𝟎𝟏𝟑

MI 

(Y=1)

No MI 

(Y=0)

Aspirin

(X=1)
n11 n12 n1.

Placebo 

(X=0)
n21 n22 n2.

n.1 n.2 n..
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MI 

(Y=1)

No MI 

(Y=0)

Aspirin

(X=1)

104 10,933 11,037

Placebo 

(X=0)

189 10,845 11,034

293 21,778 22,071

1. What is the probability of MI? 

Pr(Y=1) = 
𝒏.𝟏

𝒏..
=

𝟐𝟗𝟑

𝟐𝟐,𝟎𝟕𝟏
= 𝟎. 𝟎𝟏𝟑

2. What is the probability of having an MI and taking placebo?

Pr(Y=1∩X=0) = 
𝒏𝟐𝟏

𝒏..
=

𝟏𝟖𝟗

𝟐𝟐,𝟎𝟕𝟏
= 𝟎. 𝟎𝟎𝟖𝟔

MI 

(Y=1)

No MI 

(Y=0)

Aspirin

(X=1)
n11 n12 n1.

Placebo 

(X=0)
n21 n22 n2.

n.1 n.2 n..
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MI 

(Y=1)

No MI 

(Y=0)

Aspirin

(X=1)

104 10,933 11,037

Placebo 

(X=0)

189 10,845 11,034

293 21,778 22,071

1. What is the probability of MI? 

Pr(Y=1) = 
𝒏.𝟏

𝒏..
=

𝟐𝟗𝟑

𝟐𝟐,𝟎𝟕𝟏
= 𝟎. 𝟎𝟏𝟑

2. What is the probability of having an MI and taking placebo?

Pr(Y=1∩X=0) = 
𝒏𝟐𝟏

𝒏..
=

𝟏𝟖𝟗

𝟐𝟐,𝟎𝟕𝟏
= 𝟎. 𝟎𝟎𝟖𝟔

3. What is the probability that aspirin-takers will have an MI?

Pr(Y=1|X=1) = 
𝒏𝟏𝟏

𝒏𝟏.
=

𝟏𝟎𝟒

𝟏𝟏,𝟎𝟑𝟕
= 𝟎. 𝟎𝟎𝟗𝟒

MI 

(Y=1)

No MI 

(Y=0)

Aspirin

(X=1)
n11 n12 n1.

Placebo 

(X=0)
n21 n22 n2.

n.1 n.2 n..
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2. What is the probability of having an MI and taking placebo?

Pr(Y=1∩X=0) = 
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𝒏..
=
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3. What is the probability that aspirin-takers will have an MI?

Pr(Y=1|X=1) = 
𝒏𝟏𝟏

𝒏𝟏.
=

𝟏𝟎𝟒
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4. What is the probability that placebo-takers will have an MI?

Pr(Y=1|X=0) = 
𝒏𝟐𝟏

𝒏𝟐.
=

𝟏𝟖𝟗
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Measures of Association

▶ While the studies generally are interested in 
examining associations between predictors and 
outcomes of interest, we must have a rigorous 
method by which we can assess the magnitude of 
these associations.

▶ However, in some cases, there are restrictions 
imposed on the estimable measures of association 
by the type of study design.



Measures of Association: Risk Difference

▶ Risk Difference (RD) is a measure of the absolute effect of the 
exposure, or the excess risk of disease attributable to the 
exposure. 

▶ In the population:

𝑹𝑫 = 𝑷 𝑫 𝑬 − 𝑷(𝑫|𝑬′)

▶ Using sample probabilities will yield an unbiased estimate, 𝑹𝑫.

▶ -1 ≤ RD ≤ 1

▶ Estimable in Cross-sectional and Prospective Studies.



Measures of Association: Risk Difference

▶ RD = 0: NO ASSOCIATION

– Incidence of disease is the same for exposed and unexposed.

– Removing the exposure will have no impact on the disease.

▶ RD < 0: NEGATIVE ASSOCIATION

– The exposure reduces the incidence of disease (PROTECTIVE EFFECT).

– If those who are not exposed become exposed, their incidence of disease will 
decrease by |RD| .

▶ RD > 0: POSITIVE ASSOCIATION

– The exposure increases the incidence of disease.

– If those who are not exposed become exposed, their incidence of disease will 
increase by RD.

▶ Number Needed to Treat (NNT) = 1 / |RD| 

– How many subjects need to be exposed/treated to prevent 1 sick patient?



Measures of Association: Risk Difference – standard error
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Cross-sectional study examining relationship between osteoporosis (Osteo.) and 

severe periodontal disease (SPD1). 

SPD1 

(Y=1)

No SPD1 

(Y=0)

Osteo.

(X=1)

42 56 98

No 

Osteo.

(X=0)

108 174 282

150 230 380

Statistic Value 95% Confidence Limits

Risk Difference 0.046 -0.068 0.160



Measures of Association: Risk Ratio (Relative Risk)

▶ Risk ratio (RR) is a measure of the risk of disease in the 
exposed relative to that of the unexposed. 

▶ In the population:

𝑹𝑹 =
𝑷 𝑫 𝑬

𝑷 𝑫 𝑬′

▶ Sample probabilities will yield an unbiased estimate, 𝑹𝑹.

▶ RR ≥ 0 

▶ Estimable in Cross-sectional and Prospective Studies.



Measures of Association: Risk Ratio (Relative Risk)

▶ If RR = 1  No association
– The risk of disease is the same for exposed and 

unexposed.

▶ If RR < 1  Negative association 
– The exposure decreases the risk of disease.

– The exposure has a protective effect.

– The risk of disease in the exposed is (1-RR)% lower 
than among the unexposed.

▶ If RR > 1  Positive association 
– Exposure increases the risk of disease.



Measures of Association: Risk Ratio
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Prospective study examining relationship between oral contraceptives (OC) and 

myocardial infarction (MI).

MI 

(Y=1)

No MI 

(Y=0)

OC

(X=1)

13 4987 5,000

No OC

(X=0)

7 9993 10,000

20 14,980 15,000

Statistic Value 95% Confidence Limits

Relative Risk 3.7143 1.4829 9.3036



Measures of Association: Odds Ratio

▶ Odds ratio (OR) is a measure of the odds of: 

– exposure in the diseased relative to that of the non-

diseased [exposure OR], or

– disease in the exposed relative to that of the unexposed 

[disease OR]. 

▶ In the population, the exposure OR is equivalent to 
the disease OR:

𝑶𝑹 =
𝑷 𝑬 𝑫 /[𝟏 − 𝑷 𝑬 𝑫 ]

𝑷 𝑬 𝑫′ /[𝟏 − 𝑷 𝑬 𝑫′ ]
=

𝑷 𝑫 𝑬 /[𝟏 − 𝑷 𝑫 𝑬 ]

𝑷 𝑫 𝑬′ /[𝟏 − 𝑷 𝑫 𝑬′ ]



Measures of Association: Odds Ratio

▶ Sample probabilities will yield an unbiased estimate, 
𝑶𝑹.

▶ OR ≥ 0 

▶ Estimable in Cross-sectional, Prospective, and 
Retrospective Studies.

▶ OR is a good approximation of the RR when the 
disease is rare.

– Challenge: Why is the above statement true?



Measures of Association: Odds Ratio

▶ If OR=1  No Association

▶ If OR<1  Negative Association 

– Exposure is protective against disease.

– The odds of disease in the exposed are (1-OR)% 

lower than among the unexposed.

▶ If OR>1  Positive Association 



Measures of Association: Odds Ratio
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Retrospective study examining the relationship between age group at first birth and 

breast cancer (BC) among mothers.

BC 

(Y=1)

No BC 

(Y=0)

Age ≥ 30

(X=1)

683 1,498 2,181

Age < 30

(X=0)

2,537 8,747 11,284

3,220 10,245 13,465

Statistic Value 95% Confidence Limits

Odds Ratio 1.5720 1.4214 1.7385



PART 4.2
Hypothesis testing for categorical data

I highly recommend that you read Chapter 8 of “Introductory Statistics for the Life and 

Biomedical Sciences” by Julie Vu, David Harrington, and OpenIntro: 

https://leanpub.com/biostat

https://leanpub.com/biostat


Measures of Association to Tests of Association

▶ We have discussed parameters that can help us 
measure the magnitude of the association between two 
categorical variables, along with the uncertainty 
surrounding our estimates of those parameters.

▶ We will now discuss how to formally test our hypotheses.

– H0: No association between E and D (RD=0 or RR=1 or 

OR=1; depends on study design).

– H1: Association exists between E and D (RD≠0 or RR≠1 or 

OR≠1; depends on study design). 

26



Bivariate Tests of Association for Categorical Data

▶ But what would we expect if there were no association 
between exposure and disease?

▶ To answer this question, you must recall your basic 
probability rules.

27



Bivariate Tests of Association for Categorical Data

▶ If Exposure and Disease are independent then the 
following must be true when each variable consists only of 
2 categories.

P(E∩D) = P(E) x P(D)

P(E∩D’) = P(E) x P(D’)

P(E’∩D) = P(E’) x P(D)

P(E’∩D’) = P(E’) x P(D’)

28



Bivariate Tests of Association for Categorical Data: Chi-

Squared Test for Independence/Homogeneity

29

▶ The Chi-Squared Test allows us to test for an association 

between two categorical variables.

▶ However, with any hypothesis test, there are several 

assumptions:

– Independent observations (observations must not be correlated)

– Cell counts expected under the null hypothesis ( ො𝜇𝑖𝑗)  must be 

greater than 5



Bivariate Tests of Association for Categorical Data: Chi-

Squared Test for Independence/Homogeneity

30

D D’

E μ11 μ12 n1.

E’ μ21 μ22 n2.

n.1 n.2 n..

How do we compute the cell counts expected under the null hypothesis 

(aka expected cell counts) 𝜇𝑖𝑗 ?

𝜋𝑖𝑗 = 𝜋𝑖 ∗ 𝜋𝑗

𝑛𝑖𝑗

𝑛..
=
𝑛𝑖.
𝑛..

∗
𝑛.𝑗

𝑛..

Ƹ𝜇𝑖𝑗 = 𝑛.. ∗
𝑛𝑖.
𝑛..

∗
𝑛.𝑗
𝑛..

ෝ𝝁𝒊𝒋 =
𝒏𝒊.𝒏.𝒋

𝒏..



Bivariate Tests of Association for Categorical Data: Chi-

Squared Test for Independence/Homogeneity

31

► As in any hypothesis test, our test statistic for the chi-squared test 

must allow for the examination of how far our results (what we’ve 

observed) deviate from what would be expected under the null 

hypothesis. 

► Our test statistic  (i.e. the Pearson chi-squared statistic) can be 

computed as follows:

χ2 = 
𝑛𝑖𝑗 − 𝜇𝑖𝑗

2

𝜇𝑖𝑗
~ 𝑢𝑛𝑑𝑒𝑟 𝐻0

*Note that while I acknowledge the contributions of Pearson to the field of 

statistics, I strongly oppose his support of the eugenics movement.



Bivariate Tests of Association for Categorical Data: Chi-

Squared Test for Independence/Homogeneity

32

Properties of the chi-squared distribution:

► Ranges from 0  to ∞ (concentrated over non-negative 

values).

► As with the student’s t distribution, it is defined by its degrees 

of freedom (df), with:

─ 𝑑𝑓 = (𝐼 − 1)(𝐽 − 1)

─ 𝜇 = 𝑑𝑓

─ σ = 2𝑑𝑓

► As degrees of freedom increase, the distribution becomes 

more bell-shaped (normal).



Bivariate Tests of Association for Categorical Data: Chi-

Squared Test for Independence/Homogeneity
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Properties of the chi-squared distribution:

► Ranges from 0  to ∞ (concentrated over non-negative values).

► As with the student’s t distribution, it is defined by its degrees of 
freedom (df), with:

─ 𝜇 = 𝑑𝑓

─ σ = 2𝑑𝑓

► As degrees of freedom increase, the distribution becomes more 
bell-shaped (normal).

► Additionally…

─ The test statistic has a chi-squared distribution for large n

─ The chi-squared approximation improves as Ƹ𝜇𝑖𝑗 increases, with 
Ƹ𝜇𝑖𝑗≥5 being sufficient for this approximation.



Bivariate Tests of Association for Categorical Data: Chi-

Squared Test for Independence/Homogeneity

▶ Conducting the chi-squared test for homogeneity for earlier 

mentioned retrospective study.

– Hypotheses:

• H0: Breast cancer and breast cancer-free populations are 
homogeneous with respect to age at first birth (OR=1).

• H1: “ “ are not homogeneous “ “.

– Set 𝛼 = 0.05 and check your assumptions.

BC 

(Y=1)

No BC 

(Y=0)

Age ≥ 30

(X=1)

683 1,498 2,181

Age < 30

(X=0)

2,537 8,747 11,284

3,220 10,245 13,465

BC 

(Y=1)

No BC 

(Y=0)

Age ≥ 30

(X=1)

521.561 1659.439 2,181

Age < 30

(X=0)

2698.439 8585.561 11,284

3,220 10,245 13,465

OBSERVED EXPECTED UNDER H0, Ƹ𝜇𝑖𝑗



Bivariate Tests of Association for Categorical Data: Chi-

Squared Test for Independence/Homogeneity

▶ Conducting the chi-squared test for homogeneity for Motivating Example 3

– Hypotheses:

• H0: Breast cancer and breast cancer-free populations are homogeneous with 

respect to age at first birth (OR=1).

• H1: “ “ are not homogeneous “ “.

– Set 𝛼 = 0.05 and check your assumptions.

BC 

(Y=1)

No BC 

(Y=0)

Age ≥ 30

(X=1)

683 1,498 2,181

Age < 30

(X=0)

2,537 8,747 11,284

3,220 10,245 13,465

BC 

(Y=1)

No BC 

(Y=0)

Age ≥ 30

(X=1)

521.561 1659.439 2,181

Age < 30

(X=0)

2698.439 8585.561 11,284

3,220 10,245 13,465

OBSERVED EXPECTED UNDER H0, Ƹ𝜇𝑖𝑗

Statistic DF Value Prob

Chi-Square 1 78.3698 <.0001



Bivariate Tests of Association for Categorical Data: Chi-

Squared Test for Independence/Homogeneity

▶ Some thoughts about the chi-squared test:
– The test statistic is highly affected by sample size.

– The test statistic is not a measure of the strength of the 

association, but of the strength of the evidence against the null 

hypothesis of no association.

– No normality assumption for the underlying distribution from which the 

data come.

– While we have focused on 2x2 tables, easily extends to mxn tables.



Bivariate Tests of Association for Categorical Data: Chi-

Squared Test for Independence/Homogeneity

▶ While the chi-squared test is commonly used to test for 
an association between a categorical predictor and 
outcome of interest, however it is not an exact test 
procedure.

▶ When we do not meet the underlying assumption about 
our expected cell counts for a 2x2 table, we can instead 
use the Fisher’s Exact Test.

▶ The Fisher’s Exact test gives the exact levels of 
significance for any 2x2 table.

*Note that while I acknowledge the contributions of Fisher to the field of statistics, I 

strongly oppose his support of the eugenics movement.



Bivariate Tests of Association for Categorical Data: 

Fisher’s Exact Test

▶ Motivating Example for the Fisher’s Exact Test:

– Researchers are investigating the relationship between 

high salt intake and death from CVD. Given limited 

resources, researchers evaluated death records and 

classified cause of death as either CVD related or 

unrelated. They subsequently asked close relatives about 

the salt intake (low or high) of the deceased.



Bivariate Tests of Association for Categorical Data

CVD 

(Y=1)

No CVD 

(Y=0)

High Salt

(X=1)

2 23 25

Low Salt

(X=0)

5 30 35

7 53 60

CVD

(Y=1)

No CVD 

(Y=0)

High Salt

(X=1)

2.917 22.083 25

Low Salt

(X=0)

4.083 30.917 35

7 53 60

OBSERVED
EXPECTED UNDER NULL 

HYPOTHESIS



Bivariate Tests of Association for Categorical Data

CVD 

(Y=1)

No CVD 

(Y=0)

High Salt

(X=1)

2 23 25

Low Salt

(X=0)

5 30 35

7 53 60

CVD

(Y=1)

No CVD 

(Y=0)

High Salt

(X=1)

2.917 22.083 25

Low Salt

(X=0)

4.083 30.917 35

7 53 60

OBSERVED
EXPECTED UNDER NULL 

HYPOTHESIS

S𝐢𝐧𝐜𝐞 ෝ𝝁𝟏𝟏 < 𝟓 and ෝ𝝁𝟐𝟏 < 𝟓 , we must conduct the 

Fisher’s Exact test for 2x2 tables.



Bivariate Tests of Association for Categorical Data: 

Fisher’s Exact Test – the Hypergeometric Distribution

▶ To compute our p-value (the probability of our observed 
table or something more extreme under H0), we must be 
familiar with the hypergeometric distribution.

▶ Consider all possible tables with fixed margins 
(n1.,n2.,n.1,n.2) and that the rows and columns can be re-
arranged such that n1.≤ n2. and n.1≤ n.2 .

▶ For each 2x2 table, once we have n11, then all other cell 
counts can be computed given fixed margins.



Bivariate Tests of Association for Categorical Data: 

Fisher’s Exact Test – the Hypergeometric Distribution

▶ Thus our p-value can be computed by summing the 
probabilities of our observed table and the tables that are 
more extreme than what we have observed.

Pr 𝑋 = 𝑛11 =
𝑛1.! 𝑛2.! 𝑛.1! 𝑛.2!

𝑛..! 𝑛11! (𝑛1.−𝑛11)! 𝑛.1 − 𝑛11 ! (𝑛.2−𝑛1. + 𝑛11)!
,

where 𝑛11 = 0,… ,min(𝑛.1, 𝑛1.)

CVD 

(Y=1)

No CVD 

(Y=0)

High Salt

(X=1)

2 23 25

Low Salt

(X=0)

5 30 35

7 53 60

For our data, n11 = 0, …, min(7, 25), 

thus n11 = 0, …, 7.



Bivariate Tests of Association for Categorical Data: 

Fisher’s Exact Test – the Hypergeometric Distribution

▶ Thus our p-value can be computed by summing the 
probabilities of our observed table and the tables that are 
more extreme than what we have observed.

𝐏𝐫 𝑿 = 𝟎 = 𝟎. 𝟎𝟏𝟕
𝐏𝐫 𝑿 = 𝟏 = 𝟎. 𝟏𝟎𝟓
𝐏𝐫 𝑿 = 𝟐 = 𝟎. 𝟐𝟓𝟐
Pr 𝑋 = 3 = 0.312
𝐏𝐫 𝑿 = 𝟒 = 𝟎. 𝟐𝟏𝟒
𝐏𝐫 𝑿 = 𝟓 = 𝟎. 𝟎𝟖𝟐
𝐏𝐫 𝑿 = 𝟔 = 𝟎. 𝟎𝟏𝟔
𝐏𝐫 𝑿 = 𝟕 = 𝟎. 𝟎𝟎𝟏

CVD 

(Y=1)

No CVD 

(Y=0)

High Salt

(X=1)

2 23 25

Low Salt

(X=0)

5 30 35

7 53 60



Bivariate Tests of Association for Categorical Data: 

Fisher’s Exact Test – the Hypergeometric Distribution

▶ Thus our p-value can be computed by summing the 
probabilities of our observed table and the tables that are 
more extreme than what we have observed.

𝐏𝐫 𝑿 = 𝟎 = 𝟎. 𝟎𝟏𝟕
𝐏𝐫 𝑿 = 𝟏 = 𝟎. 𝟏𝟎𝟓
𝐏𝐫 𝑿 = 𝟐 = 𝟎. 𝟐𝟓𝟐
Pr 𝑋 = 3 = 0.312
𝐏𝐫 𝑿 = 𝟒 = 𝟎. 𝟐𝟏𝟒
𝐏𝐫 𝑿 = 𝟓 = 𝟎. 𝟎𝟖𝟐
𝐏𝐫 𝑿 = 𝟔 = 𝟎. 𝟎𝟏𝟔
𝐏𝐫 𝑿 = 𝟕 = 𝟎. 𝟎𝟎𝟏

CVD 

(Y=1)

No CVD 

(Y=0)

High Salt

(X=1)

2 23 25

Low Salt

(X=0)

5 30 35

7 53 60

Exact p-value = Pr(X = 0) + Pr(X =1)+Pr(X=2)+Pr(X=4)+Pr(X=5)+Pr(X=6)+Pr(X=7)

= 0.687



END OF PART FOUR


