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WHAT IS GENETIC EPIDEMIOLOGY?

• . . . represents an important interaction between the two parent disciplines: 
genetics and epidemiology

• Different from Epidemiology by its explicit consideration of genetic factors 
and family resemblance

• Different from Population Genetics by its focus on disease

• Different from Medical Genetics by its emphasis on population aspects

Ziegler A, König IR. Genet Epidemiol. 2014;38(5):379-380. 



WHAT IS GENETIC EPIDEMIOLOGY?

• a science that is concerned with the etiology, distribution, and control of 
disease in groups of relatives, and with inherited causes of disease in 
populations” 

[Morton and Chung, 1978] 

• a science that deals with the etiology, distribution, and control of disease-
related phenotypes in groups of relatives, and with inherited causes of disease-
related phenotypes in populations

[Ziegler and König, 2014]

Ziegler A, König IR. Genet Epidemiol. 2014;38(5):379-380. 



CLASSICAL STEPS IN GENETIC 
EPIDEMIOLOGY

Table 1. Classical steps in genetic epidemiology

Elston et al. [2007]a Thomas [2004] Ziegler and König [2010]

1. Descriptive epidemiology
1. Familiality 2. Familial aggregation 1. Familiality

2. Heritability
2. Segregation analysis 3. Segregation analysis 3. Segregation analysis
3. Linkage analysis 4. Linkage analysis 4. Linkage analysis

5. Fine mapping
4. Association analysis 6. Association analysis 5. Association analysis

7. Cloning 6. Risk estimation
8. Characterization 7. Functional studies

a Elston et al. discuss two-step approaches for association analysis and propose a
scheme in the second part of their paper in which association analysis is performed
prior to linkage analysis.

knowledge by erection of barriers and consolidation of a self-
contained group of research workers using complex statisti-
cal methods only understandable to this group alone who do
not communicate with biologic and medical workers in the
relevant fields. . . . Genetic epidemiology should not become
an end in itself.” In consequence, genetic epidemiology does
not exist out of itself, and the sensible application of spe-
cialized statistical methods is a clear necessity. Barriers can,
however, also be erected by using a too narrow definition
which might exclude other areas of a specific scientific dis-
cipline. As a result, we consider some related fields, such as
epigenetics as integral part of genetic epidemiology.

If we agree that that the steps of genetic epidemiologic re-
search from above adequately reflect the work of genetic epi-
demiologists, we suggest that the definition of the field should
cover these aspects. Furthermore, the definition should be
open to many areas of research. In this, one of the earli-
est and still most cited definitions provided by Morton and
Chung [1978] goes a long way toward this aim. They referred
to two main components of genetic epidemiology, the study
of etiology in groups of relatives and the study of inherited
causes of disease in populations. Specifically, they defined ge-
netic epidemiology as “a science that is concerned with the
etiology, distribution, and control of disease in groups of rel-
atives, and with inherited causes of disease in populations”
[Morton and Chung, 1978]. This definition was adopted by
others [Last and Abramson, 1995; Philippe, 1982].

However, we consider the original definition of Morton
and Chung [1978] to be too narrow because it is focused on
the term disease. In genetic epidemiology quantitative traits,
such as body mass index, blood pressure or even molecular
markers, measured in plasma or other tissue are investigated

in addition to disease phenotypes. An important aspect nev-
ertheless is that not arbitrary phenotypes are considered but
only those with a direct or indirect connection with a disease.
We therefore suggest a slightly different definition:

Genetic Epidemiology is a Science that Deals
with the Etiology, Distribution, and Control of
Disease-Related Phenotypes in Groups of
Relatives, and with Inherited Causes of
Disease-Related Phenotypes in Populations

As already stressed above, this definition is not meant to
exclude but to include many areas of research, such as studies
on gene–environment interaction, families, risk score mod-
els, predictive markers and pharmacogenetics, genome-wide
association studies and next generation sequencing. Omics,
such as expression quantitative trait loci (eQTL), epigenetics,
microbiome or other Omics are also included in this defini-
tion as is statistical methodology.

With this in mind, we would like to encourage all of us
to acknowledge the possible evolution of a field’s scope over
time. This is fuelled by reacting to and foreseeing techno-
logical and methodological developments as well as societal
demands. Obviously, this evolution is mirrored in the differ-
ent contributions to this journal over the past 30 years and
will hopefully be visible in the future. Happy 30th Anniver-
sary, Genetic Epidemiology!
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CLASSICAL STEPS IN GENETIC 
EPIDEMIOLOGY

• Familial aggregation: first step to see whether it trends to aggregate in 
families

• Heritability to quantify the inheritance assuming a given mode of inheritance

• Segregation analysis to characterize the mode of inheritance at a single 
locus

• Linkage analysis and association analysis: two main statistical methods for 
finding disease susceptibility loci
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Relevant questions in genetic epidemiology 

 

(Handbook of Statistical Genetics - John Wiley & Sons; Fig.28-1) 

 



FAMILIAL AGGREGATION

• How do we measure extent to which a trait is genetic?

• Two primary measures

• Recurrence risk ratio (dichotomous traits)

• Heritability (originally defined for continuous traits; can be adapted to dichotomous 
disease traits)

Martin Aryee BST227: Introduction to Statistical Genetics



RECURRENCE RISK RATIO

• Recurrence risk ratio defined for dichotomous disease trait as 

• λR = P(relative of type R diseased | proband diseased) /P(disease) 

• Proband: Subject selected into sample because of disease status. 

• P(disease) = K, population prevalence of the disease

• Relative of type R (parent, sib, etc.) 

Martin Aryee BST227: Introduction to Statistical Genetics



EXAMPLE: PROSTATE CANCER

Risk Group λR for Prostate Cancer (95% CI)

Brother(s) with prostate cancer diagnosed at any age 3.14 (2.37–4.15)

Father with prostate cancer diagnosed at any age 2.35 (2.02–2.72)

One affected FDR diagnosed at any age 2.48 (2.25–2.74)

Affected FDRs diagnosed <65 y 2.87 (2.21–3.74)

Affected FDRs diagnosed ≥65 y 1.92 (1.49–2.47)

Second degree relatives* diagnosed at any age 2.52 (0.99–6.46)

Two or more affected FDRs diagnosed at any age 4.39 (2.61–7.39)

PDQ Cancer Genetics Editorial Board. 2020. 

CI = confidence interval; FDR = first-degree relative.
*The aunts, uncles, grandparents, grandchildren, nieces, 
nephews, or half-siblings of an individual.



HERITABILITY

• Phenotypic variation attributed to 1) environmental factors, 2) genes, and 3) 
interactions between genes and environmental factors

• Heritability is a concept that summarizes how much of the variation in a trait 
is due to variation in genetic factors. 

• High heritability implies strong resemblance between parents and offspring 
with regard to a specific trait.

Wray, N. & Visscher, P. (2008) Nature Education 1(1):29



QUANTIFYING HERITABILITY

VP =VG + VE variance attributed to genetic and environmental sources

= (VA + VD + VI )+ VE genetic: additive, dominance, and epistatic 

• Broad-sense heritability H2 = VG/VP 

prop. of phenotypic variation due to genetic values that may include     

allelic interactions within loci (dominance) and between loci 

(epistasis).

• Narrow-sense heritability h2 = VA/VP

prop. of genetic variation that is due to additive genetic values (VA)

Wray, N. & Visscher, P. (2008) Nature Education 1(1):29



QUANTIFYING HERITABILITY

• Given its definition as a ratio of variance components, the value of heritability 
always lies between 0 and 1. 

• Resemblance between relatives is mostly driven by additive genetic variance 
(Hill et al., 2008)

• For instance, for height in humans, narrow-sense heritability is approximately 
0.8 (Macgregor et al., 2006). 

Wray, N. & Visscher, P. (2008) Nature Education 1(1):29



ESTIMATING HERITABILITY

• Traditionally, heritability was estimated from simple and often balanced designs.

• Simple functions of the regression of offspring on parental phenotypes, the 
correlation of full or half sibs

• The difference in the correlation of monozygotic (MZ) and dizygotic (DZ) twin pairs

Visscher, P., Hill, W. & Wray, N. Nat Rev Genet 9, 255–266 (2008).



Truncation selection
Selection of individuals with 
trait values equal to or greater 
than some threshold as 
parents of the next generation.

Stabilizing selection
Selection, either natural or 
artificial, of individuals with 
trait values in the middle of the 
distribution as parents of  
the next generation.

correlation and the apparent selection differential are 
induced by the environment, for example, nutritional 
status25. Predicting the response to multivariate selec-
tion in natural populations is an active area of research 
with new methodological developments26  but it could 
be constrained by the lack of data that is needed to 
accurately estimate genetic correlations and selection 
gradients27. We conclude that in order to predict the 
response to natural selection, knowledge of heritabili-
ties is necessary but usually not sufficient.

Heritability is not necessarily constant
Heritabilities can change. For example, estimates of 
heritability for first-lactation milk yield in dairy cattle 
nearly doubled from ~25% in the 1970s28 to ~40% in 
recent times29. From the population-specific definition 
of heritability (BOX 1), it is easy to see how heritability 
can change over time: the variance in genetic values can  
change, variation owing to environmental factors  
can change or the correlation between genes and envi-
ronments can change. Genetic variance can change 
if allele frequencies change (for example, owing to 
selection or inbreeding), if new variants come into the 
population (for example, by migration or mutation) 
or if existing variants only contribute to the genetic 
variance following a change in genetic background 
or in the environment. The same trait measured over 
an individual’s lifetime can have different genetic and 
environmental effects influencing it, so that the vari-
ances become a function of age. For example, variance 
in weight at birth is influenced by maternal uterine 
environment, variance in weight at weaning depends 
on maternal milk production, but variance of mature 
adult weight is unlikely to be influenced by maternal 
factors, which themselves have both a genetic and  
environmental component.

Heritabilities can be manipulated by changing the 
variance contributed by the environment. This can be 
as simple as changing the method of measurement, for 
example replacing a self-reported measure of height by 
a clinical one12. In unfavourable environmental condi-
tions, different hypotheses have proposed a decrease, an 

increase or unpredictable changes in genetic variance30,  
with the impact on heritability being unpredictable in 
each scenario. Empirical evidence for morphometric 
traits suggests lower heritabilities in poorer environ-
ments31, but not for traits that are more closely related to 
fitness31. Testing these hypotheses is difficult, but in an 
experiment using the cricket (Gryllus pennsylvanicus), 
in which one half of each family was raised in labora-
tory conditions and the other half was raised in cages in 
a field location, the heritabilities of wing dimorphism 
were found to be 0.71 in the laboratory but only 0.21 in 
the field samples. There was an increased total variance 
in the laboratory, but a genetic correlation close to 1 
between the two environments32.

Understanding how heritability changes with envi-
ronmental stressors is important for understanding 
evolutionary forces in natural populations31. In live-
stock, the heritability of economically important traits is 
generally higher in good husbandry environments than 
in bad environments33. Interestingly, the reason for this 
observation is not only because there are more random 
environmental effects in low-production systems that 
cause the environmental variance to increase. In good 
husbandry environments, as measured by mean per-
formance or output, there is typically increased genetic 
and environmental variance34, which is only partly 
explained by the mean-variance scale relationship that is 
often observed in nature. A similar observation (that the  
proportion of phenotypic variation due to additive 
and maternal genetic factors increases with a better 
environment) was recently made for a population of 
wild sheep35. In humans, the estimate of the heritability 
of intelligence quotient (IQ) increases with increasing 
socio-economic status36 , which might be viewed as a 
measure of quality of the environment.

Effect of selection and inbreeding on heritability
Quantitative genetic theory predicts that selection and/
or inbreeding will alter additive genetic variance and, as 
a consequence, will also alter heritability. With trunca-
tion selection used in animal and plant breeding or with 
stabilizing selection in natural populations, the variance 

-

Nature Reviews | Genetics
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Figure 2 | Estimation of heritability from the regression of offspring phenotype on the average phenotype of 
the parents. The slope of the regression line is an estimate of the narrow-sense heritability for traits with a heritability 
of 0.2 (a) and 0.8 (b) and phenotypic variance of 1. The variances of the observations about the regression line are 0.98 
(a) and 0.68 (b), demonstrating that the average phenotypic value of the parents (midparent phenotypic value) is a 
better predictor of the offspring phenotypic value if heritability is high.

R E V I E W S

NATURE REVIEWS | GENETICS  VOLUME 9 | APRIL 2008 | 261

Visscher, P., Hill, W. & Wray, N. Nat Rev Genet 9, 255–266 (2008).



A BETTER STUDY DESIGN…

• If the resemblance of parents and offspring is partly due to common 
environmental effects, then an estimate of heritability that is based on their 
resemblance will be biased upwards. 

• Phenotypic concordance of monozygotic (MZ, identical) twins versus dizygotic 
(DZ, fraternal) twins

• Shared environment for MZ and DZ twins 

• All (MZ) versus half (DZ) shared genome to phenotypic concordance

Visscher, P., Hill, W. & Wray, N. Nat Rev Genet 9, 255–266 (2008).



EXAMPLE: INTELLIGENCE QUOTIENT 
HERITABILITY 

• Cross many studies, the average MZ and DZ correlation of IQ was 0.86 and 
0.60, respectively, based on 4,672 MZ and 5,546 DZ twin pairs.

• Falconer’s formula:

• H2= 2(rMZ - rDZ) = 2(86%-60%) = 52%

• May be overestimated if 1) there is a correlation between genes and 
environment or 2) there are strong maternal effects on the IQ.

Visscher, P., Hill, W. & Wray, N. Nat Rev Genet 9, 255–266 (2008).



HERITABILITY ESTIMATION USING 
USING GENOME-WIDE GENETIC DATA

• Yij = μ + Fi + Aij + Eij, with μ the fixed effects of the mean and F,  A, and E the 
random effects of non-genetic family, additive genetic, and residual factors, 
respectively.

• The covariance between the phenotypes of two siblings is modeled as 
cov(Yi1,Yi2) = var(Fi) + cov(Ai1,Ai2) = σF2 + πa(i)σA2, and cov(Yij,Ykl) = 0 if i ≠ k, 
with πa(i) the estimate of the genome-wide actual additive relationship of the 
sibling pair.

• h2= σA2/(σA2+σF2 +σE2 )

Visscher et al. PLoS Genet. 2006;2(3):e41. 



HERITABILITY ESTIMATION USING 
GENOME-WIDE GENETIC DATA

Linkage disequilibrium score regression

• φ = Xβ + ϵ where φ is an N × 1 vector of (quantitative) phenotypes, X is an N 
× M matrix of genotypes normalized to mean zero and variance one. 

• The expected χ2 statistic of variant j is: 

• where N is the sample size; M is the number of SNPs, such that h2/M is the 
average heritability explained per SNP; a measures the contribution of 
confounding biases, such as cryptic relatedness and population stratification; 
and                  is the LD Score of variant j, which measures the amount of 
genetic variation tagged by j.

Bulik-Sullivan, B., Loh, P., Finucane, H. et al. Nat Genet 47, 291–
295 (2015).
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Both polygenicity (many small genetic effects) and 
confounding biases, such as cryptic relatedness and population 
stratification, can yield an inflated distribution of test statistics 
in genome-wide association studies (GWAS). However, current 
methods cannot distinguish between inflation from a true 
polygenic signal and bias. We have developed an approach,  
LD Score regression, that quantifies the contribution of each by 
examining the relationship between test statistics and linkage 
disequilibrium (LD). The LD Score regression intercept can 
be used to estimate a more powerful and accurate correction 
factor than genomic control. We find strong evidence that 
polygenicity accounts for the majority of the inflation in test 
statistics in many GWAS of large sample size.

Variants in LD with a causal variant show an elevation in test statistics 
in association analysis proportional to their LD (measured by r2 ) with 
the causal variant1–3. The more genetic variation an index variant 
tags, the higher the probability that this index variant will tag a causal  
variant. In contrast, inflation from cryptic relatedness within or 
between cohorts4–6  or population stratification purely from genetic 
drift will not correlate with LD.

Under a polygenic model, in which effect sizes for variants are 
drawn independently from distributions with variance propor-
tional to 1/(p(1 –  p)), where p is the minor allele frequency (MAF),  
the expected C2  statistic of variant j is:

E Nh M Naj j[ | ] /D 2 2 1A A� � �

where N is the sample size; M is the number of SNPs, such that h2 /M 
is the average heritability explained per SNP; a measures the contribu-
tion of confounding biases, such as cryptic relatedness and population 
stratification; and Aj k jkr� 3 2  is the LD Score of variant j, which mea-
sures the amount of genetic variation tagged by j (a full derivation  

(1)(1)

of this equation is provided in the Supplementary Note).This rela-
tionship holds for meta-analyses and also for ascertained studies 
of binary phenotypes, in which case h2  is on the observed scale. 
Consequently, if we regress the C2  statistics from GWAS against LD 
Score (LD Score regression), the intercept minus one is an estimator 
of the mean contribution of confounding bias to the inflation in the 
test statistics.

RESULTS
Overview of methods
We estimated LD Scores from the European-ancestry samples in the 
1000 Genomes Project7  (EUR) using an unbiased estimator8  of r2  
with 1-cM windows, singletons excluded (MAF > 0.13%) and no r2  
cutoff. Standard errors were estimated by jackknifing over blocks of 
individuals, and we used these standard errors to correct for attenu-
ation bias in LD Score regression (that is, the downward bias in the 
magnitude of the regression slope that occurs when the regressor is 
measured noisily; Online Methods).

For LD Score regression, we excluded variants with EUR MAF < 
1% because the LD Score standard errors for these variants were very 
high (note that the variants included in LD Score regression are a sub-
set of the variants included in LD Score estimation). In addition, we 
excluded loci with extremely large effect sizes or extensive long-range 
LD from all regressions because these loci can be considered outliers 
in such an analysis and would have disproportionate influence on the 
regression (Online Methods).

An important consideration in the estimation of LD Score is the 
extent to which the sample from which LD Score is estimated matches 
the sample for the association study. If there is a mismatch between 
the LD Scores from the reference population and the target population 
used for GWAS, then LD Score regression can be biased in two ways. 
First, if LD Scores in the reference population are equal to LD Scores 
in the target population plus mean-zero noise, then the intercept will 

LD Score regression distinguishes confounding from 
polygenicity in genome-wide association studies
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Both polygenicity (many small genetic effects) and 
confounding biases, such as cryptic relatedness and population 
stratification, can yield an inflated distribution of test statistics 
in genome-wide association studies (GWAS). However, current 
methods cannot distinguish between inflation from a true 
polygenic signal and bias. We have developed an approach,  
LD Score regression, that quantifies the contribution of each by 
examining the relationship between test statistics and linkage 
disequilibrium (LD). The LD Score regression intercept can 
be used to estimate a more powerful and accurate correction 
factor than genomic control. We find strong evidence that 
polygenicity accounts for the majority of the inflation in test 
statistics in many GWAS of large sample size.

Variants in LD with a causal variant show an elevation in test statistics 
in association analysis proportional to their LD (measured by r2 ) with 
the causal variant1–3. The more genetic variation an index variant 
tags, the higher the probability that this index variant will tag a causal  
variant. In contrast, inflation from cryptic relatedness within or 
between cohorts4–6  or population stratification purely from genetic 
drift will not correlate with LD.

Under a polygenic model, in which effect sizes for variants are 
drawn independently from distributions with variance propor-
tional to 1/(p(1 –  p)), where p is the minor allele frequency (MAF),  
the expected C2  statistic of variant j is:

E Nh M Naj j[ | ] /D 2 2 1A A� � �

where N is the sample size; M is the number of SNPs, such that h2 /M 
is the average heritability explained per SNP; a measures the contribu-
tion of confounding biases, such as cryptic relatedness and population 
stratification; and Aj k jkr� 3 2  is the LD Score of variant j, which mea-
sures the amount of genetic variation tagged by j (a full derivation  

(1)(1)

of this equation is provided in the Supplementary Note).This rela-
tionship holds for meta-analyses and also for ascertained studies 
of binary phenotypes, in which case h2  is on the observed scale. 
Consequently, if we regress the C2  statistics from GWAS against LD 
Score (LD Score regression), the intercept minus one is an estimator 
of the mean contribution of confounding bias to the inflation in the 
test statistics.

RESULTS
Overview of methods
We estimated LD Scores from the European-ancestry samples in the 
1000 Genomes Project7  (EUR) using an unbiased estimator8  of r2  
with 1-cM windows, singletons excluded (MAF > 0.13%) and no r2  
cutoff. Standard errors were estimated by jackknifing over blocks of 
individuals, and we used these standard errors to correct for attenu-
ation bias in LD Score regression (that is, the downward bias in the 
magnitude of the regression slope that occurs when the regressor is 
measured noisily; Online Methods).

For LD Score regression, we excluded variants with EUR MAF < 
1% because the LD Score standard errors for these variants were very 
high (note that the variants included in LD Score regression are a sub-
set of the variants included in LD Score estimation). In addition, we 
excluded loci with extremely large effect sizes or extensive long-range 
LD from all regressions because these loci can be considered outliers 
in such an analysis and would have disproportionate influence on the 
regression (Online Methods).

An important consideration in the estimation of LD Score is the 
extent to which the sample from which LD Score is estimated matches 
the sample for the association study. If there is a mismatch between 
the LD Scores from the reference population and the target population 
used for GWAS, then LD Score regression can be biased in two ways. 
First, if LD Scores in the reference population are equal to LD Scores 
in the target population plus mean-zero noise, then the intercept will 
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CLASSICAL STEPS IN GENETIC 
EPIDEMIOLOGY

Table 1. Classical steps in genetic epidemiology

Elston et al. [2007]a Thomas [2004] Ziegler and König [2010]

1. Descriptive epidemiology
1. Familiality 2. Familial aggregation 1. Familiality

2. Heritability
2. Segregation analysis 3. Segregation analysis 3. Segregation analysis
3. Linkage analysis 4. Linkage analysis 4. Linkage analysis

5. Fine mapping
4. Association analysis 6. Association analysis 5. Association analysis

7. Cloning 6. Risk estimation
8. Characterization 7. Functional studies

a Elston et al. discuss two-step approaches for association analysis and propose a
scheme in the second part of their paper in which association analysis is performed
prior to linkage analysis.

knowledge by erection of barriers and consolidation of a self-
contained group of research workers using complex statisti-
cal methods only understandable to this group alone who do
not communicate with biologic and medical workers in the
relevant fields. . . . Genetic epidemiology should not become
an end in itself.” In consequence, genetic epidemiology does
not exist out of itself, and the sensible application of spe-
cialized statistical methods is a clear necessity. Barriers can,
however, also be erected by using a too narrow definition
which might exclude other areas of a specific scientific dis-
cipline. As a result, we consider some related fields, such as
epigenetics as integral part of genetic epidemiology.

If we agree that that the steps of genetic epidemiologic re-
search from above adequately reflect the work of genetic epi-
demiologists, we suggest that the definition of the field should
cover these aspects. Furthermore, the definition should be
open to many areas of research. In this, one of the earli-
est and still most cited definitions provided by Morton and
Chung [1978] goes a long way toward this aim. They referred
to two main components of genetic epidemiology, the study
of etiology in groups of relatives and the study of inherited
causes of disease in populations. Specifically, they defined ge-
netic epidemiology as “a science that is concerned with the
etiology, distribution, and control of disease in groups of rel-
atives, and with inherited causes of disease in populations”
[Morton and Chung, 1978]. This definition was adopted by
others [Last and Abramson, 1995; Philippe, 1982].

However, we consider the original definition of Morton
and Chung [1978] to be too narrow because it is focused on
the term disease. In genetic epidemiology quantitative traits,
such as body mass index, blood pressure or even molecular
markers, measured in plasma or other tissue are investigated

in addition to disease phenotypes. An important aspect nev-
ertheless is that not arbitrary phenotypes are considered but
only those with a direct or indirect connection with a disease.
We therefore suggest a slightly different definition:

Genetic Epidemiology is a Science that Deals
with the Etiology, Distribution, and Control of
Disease-Related Phenotypes in Groups of
Relatives, and with Inherited Causes of
Disease-Related Phenotypes in Populations

As already stressed above, this definition is not meant to
exclude but to include many areas of research, such as studies
on gene–environment interaction, families, risk score mod-
els, predictive markers and pharmacogenetics, genome-wide
association studies and next generation sequencing. Omics,
such as expression quantitative trait loci (eQTL), epigenetics,
microbiome or other Omics are also included in this defini-
tion as is statistical methodology.

With this in mind, we would like to encourage all of us
to acknowledge the possible evolution of a field’s scope over
time. This is fuelled by reacting to and foreseeing techno-
logical and methodological developments as well as societal
demands. Obviously, this evolution is mirrored in the differ-
ent contributions to this journal over the past 30 years and
will hopefully be visible in the future. Happy 30th Anniver-
sary, Genetic Epidemiology!
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SEGREGATION ANALYSIS

• Segregation analysis is a statistical technique that attempts to explain the 
causes of family aggregation of disease.

• It aims to determine the transmission pattern of the trait within families (often 
ascertained via probands as in aggregation studies) and to test this pattern 
against predictions from specific genetic models:

• - Dominant? Recessive? Co-dominant? Additive?

• This information is useful in parametric linkage analysis, which assumes a 
defined model of inheritance 



INTRODUCTION TO SEGREGATION 
ANALYSIS

• In the mid 1800’s, Gregor Mendel 
demonstrated the existence of genes 
based on the regular occurrence of 
certain characteristic ratios (segregation 
ratios) of dichotomous characters (or 
traits) among the offspring of crosses 
between parents of various 
characteristics and lineages.

•



MENDELIAN INHERITANCE

• Law of Segregation (The ”First 
Law”):  Alleles at any given gene are 
transmitted randomly and with equal 
probability.

• Law of Independent Assortment 
(The ”Second Law”): alleles of 
different genes are transmitted 
independently (we now know this does 
not apply when loci are located near 
each other on the same chromosome 
(linked).



MENDELIAN GENETICS

• Mode of Inheritance is the manner in which a particular genetic trait or 
disorder is passed from one generation to the next. 

BioNinja



SEGREGATION ANALYSIS

• Segregation analysis entails fitting a variety of models (both genetic and non-
genetic; major genes or multiple genes/polygenes) to the data obtained from 
families and evaluating the results to determine which model best fits the data. 



SEGREGATION ANALYSIS FOR 
AUTOSOMAL DOMINANT DISEASE 

• Consider a disease that is believed to by the caused by a fully penetrant rare 
mutant allele at an autosomal locus. 

• Let D be the allele causing the disorder and let d represent be the normal allele. 

• There are 9 possible mating types (DD, Dd, or dd x DD, Dd, or dd)

• Each of these mating types will produce offspring with a characteristic distribution 
of genotypes and therefore a distribution of phenotypes.

• The proportions of the different genotypes and phenotypes in the offspring of the 
six mating types are known as the segregation ratios of the mating types.

• These specific values of the segregation ratios can be used to test whether a 
disease is caused by a single autosomal dominant gene.

K Van Steen slides 



SEGREGATION ANALYSIS FOR 
AUTOSOMAL DOMINANT DISEASE

• Suppose that a random sample of matings between two parents where one is 
affected and one is unaffected is obtained 

• Out of a total of n offspring, r are affected. Since autosomal dominant genes 
are usually rare, it is reasonable to assume that the frequency of allele D is 
quite low and that most affected individuals are expected to have genotype of 
Dd instead of DD. 

• What are the matings in the sample under this assumption? How can we test if 
the observed segregation ratios in the offspring are what is expected if the 
disease were indeed caused by an autosomal dominant allele? The Binomial 
distribution can be used to model this data.

K Van Steen slides 
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AUTOSOMAL DOMINANT DISEASE 
EXAMPLE

• Marfan syndrome, a connective tissue disorder, is a rare disease that is believed 
to be autosomal dominant (and actually is!)

• 112 offspring of an affected parent and an unaffected parent are sampled

• 52 of the offspring are affected and 60 are unaffected

• Are these obervations consistent with an autosomal dominant disease?

• P-value = Pr(X≤52) + Pr(X>60) = 0.5085

• What if only 42 of the offspring are affected?

• P-value = Pr(X≤42) + Pr(X>68) = 0.0104

K Van Steen slides 



BINOMIAL DISTRIBUTION

• The binomial distribution is a very common discrete probability distribution 
that arises in the following situation: 

• A fixed number, n, of trials 

• The n trials are independent of each other 

• Each trial has exactly two outcomes: “success” and “failure” 

• The probability of a success, p, is the same for each trial 

• If X is the total number of successes in a binomial setting, then we say that the 
probability distribution of X is a binomial distribution with parameters n and p: 
X ∼ B(n, p), P(X = x) = C!" px(1 − p)(n−x)

K Van Steen slides 



BINOMIAL DISTRIBUTION
Segregation analysis for autosomal dominant disease

Let X be the number of o↵spring that are a↵ected.
Under the null hypothesis, X will have a binomial distribution

P(X = x) =

✓
n

x

◆
p

x(1� p)(n�x)

where p is the probability that an o↵spring is a↵ected.
We are interested in testing

H0: p = 1
2 vs. Ha: p 6= 1

2

Out of a total of n o↵spring, r are a↵ected. The p-value is the
probability of observing a value at least as extreme as r . If
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K Van Steen slides 



COMPLEX SEGREGATION ANALYSIS

• Elston-Stewart Algorithm

• Likelihood based method with the elements, Pr(data, parameters):

• P(Gfounder): prior probabilities for founder genotypes

• Based on allele frequencies assuming Hardy-Weinberg equilibrium

• E.g., P(A)=p, P(AA)=p2, P(Aa)=2pq, P(aa)=(1-p)2 assuming HWE

• P(Go |Gf, Gm): segregation probabilities for offspring genotypes given parents’

• Mendel’s first law

• P(Xi | Gi):  penetrances for individual phenotypes given offspring genotypes

• Complete or incomplete penetrance



COMPLEX SEGREGATION ANALYSISOverall Pedigree Likelihood 
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z Notice the three elements: 
 

• Probability of founder genotypes 
• Probability of children given parents 
• Probability of phenotypes given genotypes 



PENETRANCE PARAMETERS DETERMINE 
MODEL TYPE 

• Consider the following parameterization

• f11= Pr(Disease|11)= k

• f12= Pr(Disease|12)= k – c12

• f22= Pr(Disease|22)= k – c22

where 0 ≤ c12, c22 ≤ k

• What is the relationship between c12 and c22 for an additive model?

• What are the parameter values for a fully penetrant dominant disease?

• Note that if c12=c22=0, then the locus is not involved with the phenotype, and 
k would be equal to Kp (population prevalence of the disease).



LINKAGE ANALYSIS

Chia-Ling Kuo, Department of Public Health Sciences, 

University of Connecticut Health



LINKAGE

• Segregation of a marker allele with 
disease phenotype within a family 
represents physical linkage between a 
marker and a disease locus.

• In this pedigree, the “A” allele segregates 
with the disease. It is shared identical-by-
descent in all the affected individuals.

John P. Hussman Institute for Human Genomics



LINKAGE

• When the disease chromosomes are 
added, there is physical linkage between 
the marker locus and disease locus.

• “A” is segregating with the disease in this 
Autosomal Dominant family because it is 
near enough to the disease locus so that 
there has been no recombination.

John P. Hussman Institute for Human Genomics



LINKAGE AND RECOMBINATION

• An individual carries two sets of 
chromosomes, one from the mother and 
one from the father. Imagine two loci, 
each with two alleles. When the 
individual forms gametes, there are 4 
types of gametes that can be formed with 
respect to alleles at the two loci: 2 
parental, 2 recombinant.

• Two loci are linked if the proportion of 
recombinant gametes is smaller than 1/2. 
When they are unlinked each type of 
gamete is formed with equal frequency.

John P. Hussman Institute for Human Genomics



RECOMBINATION FRACTION

A. Two loci on different chromosomes 
segregate independently, each possibility 
having probability ¼

B. Two loci on the same chromosome 
segregating without recombination, with 
probability 1-𝜃 or with recombination, 
with probability 𝜃

Thomas 2004 Statistical Methods in Genetic Epidemiology

1-𝜃

𝜃



RECOMBINATION FRACTION TO 
PHYSICAL DISTANCE

• Map function showing the relationship 
between physical distance (x) in base 
pairs (bp) and recombination fraction (𝜃) 
in Morgans

Thomas 2004 Statistical Methods in Genetic Epidemiology



COMMON STUDY DESIGNS

Family data from 

• Nuclear or extended families usually ascertained via an affected proband

• Relative pairs, e.g., affected sibpairs



EXAMPLE METHODS

Binary traits

• LOD score method: likelihood based method

• Relative pair methods: observed shared genetic similarity vs. expected

Quantitative traits

• Haseman-Elston regression: phenotypic similarity linked to genetic similarity

• Variance components method



COUNTING RECOMBINANTS

NR NR       NR        NR        R R R        R           R          NR
Thomas 2004 Statistical Methods in Genetic Epidemiology

Dd, Mm

D  d  
M  m

Dd, Mm

D  d
m  M



COUNTING RECOMBINANTS

NR NR       NR        NR        R R R        R           R          NR

L(𝞱) = 0.5 L1+0.5 L2=(1-𝞱)4𝞱 + 0.5𝞱4(1-𝞱)1

Thomas 2004 Statistical Methods in Genetic Epidemiology
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LOGARITHM OF THE ODDS (LOD) SCORE

• LOD(𝞱) = log10 [L( #𝜃)/L(0.5)], where 𝞱=0.5 under the null hypothesis of no 
linkage between this marker and the disease locus

Thomas 2004 Statistical Methods in Genetic Epidemiology

• By convention, a LOD score greater 
than 3 is considered evidence of 
linkage.

• On the other hand, a LOD score less 
than -2 is considered evidence to 
exclude linkage.



GENETIC SIMILARITY: IDENTICAL BY 
DESCENT

IBD=0 IBD=1 IBD=2

Thomas 2004 Statistical Methods in Genetic Epidemiology



GENETIC SIMILARITY: IDENTICAL BY 
DESCENT

IBD=0 IBD=1 or 2 IBD=0 or 2

Thomas 2004 Statistical Methods in Genetic Epidemiology



IBD DISTRIBUTION UNDER THE NULL: 
THETA = 0.5

Full sibs: 
Mean IBD = 0x0.25 + 1x(1/2) + 2x(1/4) = 1
Mean IBD proportion = ½ = 0.5 Thomas 2004 Statistical Methods in Genetic Epidemiology



EXAMPLE OF AFFECTED SIB PAIR TEST

Full sibs: P(IBD=0) = 0.25, P(IBD=1) = 0.5, P(IBD=2) = 0.25

Thomas 2004 Statistical Methods in Genetic Epidemiology



EXAMPLE OF AFFECTED SIB PAIR TEST

(mean IBD proportion = ½)

P-value = P(𝜒!! > 5.50) > 0.05

Thomas 2004 Statistical Methods in Genetic Epidemiology



HASEMAN-ELSTON REGRESSION

Ziegler and König 2006 A Statistical Approach to Genetic Epidemiology



HASEMAN-ELSTON REGRESSION

𝐸 𝑦!|𝐼𝐵𝐷" = 𝛼 + 𝛽𝜏",! + 𝛾𝑧",!$ (8.4)

Ziegler and König 2006 A Statistical Approach to Genetic Epidemiology



VARIANCE COMPONENTS METHODS

𝑥$% = 𝜇 + 𝑔$& + 𝐺$& + 𝜷'𝒖𝒊𝒕 + 𝑒$&
assuming 
xi follows a multivariate normal distribution,
g (trait locus), G (random polygenic effect), and e (error 
term) are pairwise uncorrelated.

Phenotype of j-th individual in the i-th family

Ziegler and König 2006 A Statistical Approach to Genetic Epidemiology



VARIANCE COMPONENTS METHOD

Ziegler and König 2006 A Statistical Approach to Genetic Epidemiology



GENETIC ASSOCIATION ANALYSIS

Chia-Ling Kuo
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LINKAGE AND ASSOCIATION

• Linkage looks at the transmission of a locus with a disease, whereas association 
focuses on the relation of an allele with a disease.

• Whereas linkage is based on transmission withing families, association is within 
populations.



CASUAL MODELS FOR GENETIC 
ASSOCIATION 



KEY TO THE SUCCESS: LINKAGE 
DISEQUILIBRIUM

pAB

paB

pAb

pab

Disease Locus

D = pAB – pA pB



AN ASSOCIATION TEST FOR TRIOS

Transmission Disequilibrium Test (TDT)

• Trio data: one affected child and his or her parents, regardless of their affection 
status

• Based on the genotypes of a trio, four parental alleles can be classified into 
transmitted alleles and non-transmitted alleles.

• Example:  Aa (father) x Aa (mother) àAA (child)

• Father:  A (transmitted) a (non-transmitted)

• Mother:  A (transmitted) a (non-transmitted)



AN ASSOCIATION TEST FOR TRIOS

1 from the father 
and 1 from the 
mother in that trio 



AN ASSOCIATION TEST FOR TRIOS

Essentially McNemar test statistic following the chi-square 
test with 1 degree of freedom under the null hypothesis 



ASSOCIATION TESTS FOR CASE-
CONTROL DATA

• Unrelated individual data mostly case-control data

• Genetic association analysis to associate genotypes and the disease status

• May or may not assume the mode of inheritance

• Statistically, models to consider

• Case-control status ~ two indicators for AA and aA

• Case-control status ~ genetic score (additive 0, 1, 2 for aa,  Aa, and AA)

• Case-control status ~ genetic score (dominant 0, 1, 1 for aa,  Aa, and AA)

• Case-control status ~ genetic score (recessive 0, 0, 1 for aa,  Aa, and AA)

Subject.   Diseased   Marker 

1 Yes AA

2 No aa

3 No Aa

4 Yes Aa

5 Yes AA

. . .

. . .

. . .

Data



IN REALITY….

• Case-control status ~ genetic score + age + sex + genetic principal 
components + technical variables + …

• Genotyped and imputed data

• Mixed family and unrelated individual data

• Significance evaluated at the genome-wide significance level (P < 5 x 10-8) 
regardless of the number of test

• ……covered by following lectures?!
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