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Inferring Ancestry from Genetic Data

Background: Population Structure
I Humans originally spread across the world many thousand

years ago.
I Migration and genetic drift led to genetic diversity between

isolated groups.

Image from https://science.education.nih.gov
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Inferring Ancestry from Genetic Data

Population Structure Inference

I Inference on genetic ancestry differences among individuals
from different populations, or population structure, has been
motivated by a variety of applications:
I population genetics
I genetic association studies
I personalized medicine
I forensics

I Advancements in array-based genotyping technologies have
largely facilitated the investigation of genetic diversity at
remarkably high levels of detail

I A variety of methods have been proposed for the identification
of genetic ancestry differences among individuals in a sample
using high-density genome-screen data.
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Inferring Ancestry from Genetic Data

Population Structure Inference in Unrelated Samples with Standard PCA (sPCA)

Inferring Population Structure with PCA

I Principal Components Analysis (PCA) is the most widely used
approach for identifying and adjusting for ancestry difference
among sample individuals

I PCA applied to genotype data can be used to calculate
principal components (PCs) that explain differences among
the sample individuals in the genetic data

I The top PCs are viewed as continuous axes of variation that
reflect genetic variation due to ancestry in the sample.

I Individuals with “similar” values for a particular top principal
component are expected to have “similar” ancestry for that
axes.
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Inferring Ancestry from Genetic Data

Population Structure Inference in Unrelated Samples with Standard PCA (sPCA)

Standard Principal Components Analysis (sPCA)

I sPCA is an unsupervised learning tool for dimension reduction
in multivariate analysis.

I Widely used in genetics community to infer population
structure from genetic data.
I Belief that top principal components (PCs) will reflect

population structure in the sample.

I Orthogonal linear transformation to a new coordinate system
I sequentially identifies linear combinations of genetic markers

that explain the greatest proportion of variability in the data
I these define the axes (PCs) of the new coordinate system
I each individual has a value along each PC

I EIGENSOFT (Price et al., 2006) is a popular implementation
of PCA.
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Inferring Ancestry from Genetic Data

Population Structure Inference in Unrelated Samples with Standard PCA (sPCA)

Data Structure
I Sample of N individuals, indexed by i = 1, 2, . . . , N .

I Genome screen data on M genetic autosomal markers,
indexed by m = 1, 2, . . . ,M .

I At each marker, for each individual, we have a genotype value,
gim.

I Here we consider bi-allelic markers, so gim takes values 0, 1,
or 2, corresponding to the number of reference alleles.

I We center and standardize these genotype values:

zim =
gim − 2p̂m√
2p̂m(1− p̂m)

where p̂m is an estimate of the reference allele frequency for
marker m.
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Inferring Ancestry from Genetic Data

Population Structure Inference in Unrelated Samples with Standard PCA (sPCA)

Genetic Correlation Estimation
I Create an N x M matrix, ZZZ, of centered and standardized

genotype values, and with ZZZ we can obtain an N x N genetic
relatedness matrix (GRM) for all possible pairs in the sample:

Ψ̂ =
1

M
ZZZZZZT

I The (i, j)th element of this matrix is

Ψ̂ij =
1

M

M∑
m=1

(gim − 2p̂m) (gjm − 2p̂m)

2p̂m(1− p̂m)
,

where Ψ̂ij can be viewed as an estimate of the genome-wide
average genetic correlation between individuals i and j.

I Individuals from the same ancestral population are expected
to have genotypic values that are more correlated than
individuals from different ancestral populations.
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Inferring Ancestry from Genetic Data

Population Structure Inference in Unrelated Samples with Standard PCA (sPCA)

Standard Principal Components Analysis (sPCA)

I PCA is performed by obtaining the eigen-decomposition of Ψ̂;
that is, we find eigenvectors and eigenvalues such that

Ψ̂ = VVVTLLLVVV where
I VVV = [V1,V2, . . . ,VN ] is a N x N matrix consisting of N

eigenvectors, each of length N
I LLL is a diagonal matrix of N eigenvalues,

(λ1 > λ2 > . . . > λN ), that are in decreasing order, i.e.,

LLL =


λ1 0 . . . 0

0 λ2
...

...
. . .

0 . . . 0 λN


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Inferring Ancestry from Genetic Data

Population Structure Inference in Unrelated Samples with Standard PCA (sPCA)

Standard Principal Components Analysis (sPCA)

I The dth principal component (eigenvector) corresponds to
eigenvalue λd, where λd is proportional to the percentage of
variability in the genome-screen data that is explained by Vd.

I The top principal components are viewed as continuous axes
of variation that reflect genetic variation that best explain
genotypic variability amongst the N sample individuals.

I Individuals with ”similar” values for a particular top principal
component are expected to have ”similar” ancestry for that
axes.

I As a result, eigenvectors (PCs) are often used as surrogates
for ancestry (or population structure).

9 / 15



Inferring Ancestry from Genetic Data

Population Structure Inference in Unrelated Samples with Standard PCA (sPCA)

PCA of Europeans

I In a very influential paper, an application of PCA to genetic
data from European samples (Novembre et al., 2008)
illustrated that among Europeans for whom all four
grandparents originated in the same country, the first two
principal components computed using 200,000 SNPs could
map their country of origin quite accurately in a plane
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Inferring Ancestry from Genetic Data

Population Structure Inference in Unrelated Samples with Standard PCA (sPCA)

PCA of Europeans
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Inferring Ancestry from Genetic Data

Population Structure Inference in Unrelated Samples with Standard PCA (sPCA)

PCA in Finland

I There can be population structure in all populations, even
those that appear to be relatively “homogenous”

I An application of principal components to genetic data from
Finland samples (Sabatti et al., 2009) identified population
structure that corresponded very well to geographic regions in
this country.

12 / 15



Inferring Ancestry from Genetic Data

Population Structure Inference in Unrelated Samples with Standard PCA (sPCA)

PCA in Finland
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Inferring Ancestry from Genetic Data

Population Structure Inference in Related Samples

Caution: Relatedness Confounds sPCA
I Recall that the elements in the GRM used by sPCA, Ψ̂ij , are

an estimate of the genome-wide average genetic correlation
between individuals i and j.

I Conomos et al. (2015) showed that
Ψij = 2 [φij + (1− φij)Aij ]
I φij : kinship coefficient - a measure of familial relatedness

(more about this later!)
I Aij : a measure of ancestral similarity

I sPCA is an unsupervised method; in related samples we don’t
know the correlation structure each eigenvector is actually
reflecting
I If the only genetic correlation structure among individuals is

due to ancestry, Ψ and the top PCs will capture this.
I If there is relatedness in the sample, the top PCs may reflect

this or some combination of ancestry and relatedness.
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Inferring Ancestry from Genetic Data

Population Structure Inference in Related Samples

PCA for Related Samples

The PC-AiR method was developed for performing a Principal
Components Analysis in Related samples. The algorithm has the
following steps:
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Genetic Analysis of Admixed Populations

Recently Admixed Populations

I Multi-ethnic cohorts often include individuals sampled from
admixed populations: populations characterized by ancestry
derived from two or more ancestral populations that were
reproductively isolated.

I Admixed populations have arisen in the past several hundred
years as a consequence of historical events such as the
transatlantic slave trade, the colonization of the Americas and
other long-distance migrations.

I Examples of admixed populations include
I African Americans and Hispanic Americans in the U.S
I Latinos from throughout Latin America
I Uyghur population of Central Asia
I Cape Verdeans
I South African ”Coloured” population
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Genetic Analysis of Admixed Populations

Figure 3 

The American Journal of Human Genetics 2020 107265-277DOI: (10.1016/j.ajhg.2020.06.012) 

Copyright © 2020 

Figure: Estimated Proportions of African Ancestry across Atlantic Africa, the Americas, and Europe
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Genetic Analysis of Admixed Populations

Ancestry	
  Admixture	
  

Ancestral�
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Ancestral�
Pop. A	
  

Today	
  

I The chromosomes of an admixed individual represent a
mosaic of chromosomal blocks from the ancestral populations.
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Genetic Analysis of Admixed Populations

Recently Admixed Populations

I Can be substantial genetic heterogeneity among individuals in
admixed populations

I Admixed populations are ancestrally admixed and thus have
population structure.

I Statistical method for estimating admixture proportions using
genetic data are available
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Genetic Analysis of Admixed Populations

Supervised Learning of Ancestry Admixture

I Methods, such as ADMIXTURE (Alexander et al., 2009),
have recently been developed for supervised learning of
ancestry proportions for an admixed individuals using
high-density SNP data.

I Most use either a hidden Markov model (HMM) or an
Expectation-Maximization (EM) algorithm to infer
genome-wide or global ancestry

I Other methods, such as RFMix (Maples et al., 2013) have
been implemented to infer local ancestry of admixed
individuals, i.e., ancestry at specific locations on the genome.

6 / 21



Genetic Analysis of Admixed Populations

Supervised Learning of Ancestry Admixture
I Example: We are interested in identifying the ancestry

proportions for an admixed individual
I Suppose the observed sequence on a chromosome for an

admixed individual is:
...TATACGTGCACCTGGATTACAGATTACAGATTACAGATTACATTGCATCGATCGAA...

I Assume that we have a suitable reference panel with diverse
ancestries, and a similar sequence is observed in samples from
one of the “homogenous” reference populations:
...TGATCCTGAACCTAGATTACAGATTACAGATTACAGATTACAATGCTTCGATGGAC...
...AGATCCTGAACCTAGATTACAGATTACAGATTACAGATACCAATGCTTCGATGGAC...
...CGATCCTGAACCTAGATTACAGATTACAGATTTGCGTATACAATGCTTCGATGGAC...

I Can infer the likelihood of the observed sequence in the
admixed individuals being derived from each of the reference
population samples. This can be performed across the
genome.
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Genetic Analysis of Admixed Populations

Inferring Ancestry in HapMap ASW and MXL Related Samples

Example: HapMap ASW and MXL Ancestry
Inference

I Genome-screen data on 150,872 autosomal SNPs was used to
estimate ancestry

I Estimated genome-wide ancestry proportions of every
individual using the ADMIXTURE (Alexander et al., 2009)
software

I A supervised analysis was conducted using genotype data
from the following reference population samples for three
”ancestral” populations
I HapMap YRI for West African ancestry
I HapMap CEU samples for northern and western European

ancestry
I HGDP Native American samples for Native American ancestry.
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Genetic Analysis of Admixed Populations

Inferring Ancestry in HapMap ASW and MXL Related Samples

Supervised ADMIXTURE Estimated Ancestry for HapMap MXL + ASW 
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Genetic Analysis of Admixed Populations

Inferring Ancestry in HapMap ASW and MXL Related Samples

Table: Average Estimated Ancestry Proportions for HapMap African
Americans and Mexican Americans

Estimated Ancestry Proportions (SD)
Population European African Native American

MXL 49.9% (14.8%) 6%(1.8%) 44.1% (14.8%)
ASW 20.5% (7.9%) 77.5% (8.4%) 1.9% (3.5%)
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Genetic Analysis of Admixed Populations

Inferring Ancestry in HapMap ASW and MXL Related Samples

Figure: HapMap MXL + ASW Sample
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Inferring Ancestry in HapMap ASW and MXL Related Samples

HapMap MXL: Known and Cryptic Relatedness
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Genetic Analysis of Admixed Populations

Inferring Population Structure in HCHS/SOL

I “Genetic diversity and association studies in US
Hispanic/Latino populations: Applications in the Hispanic
Community Health Study/Study of Latinos.” (2016)
American Journal of Human Genetics 98(1), 165-184.
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Genetic Analysis of Admixed Populations

Inferring Population Structure in HCHS/SOL

PCA-AiR: Hispanic Community Health Study
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Genetic Analysis of Admixed Populations

Inferring Population Structure in HCHS/SOL

PC-AiR: Hispanic Community Health Study
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Genetic Analysis of Admixed Populations

Inferring Population Structure in HCHS/SOL

PC-AiR: Hispanic Community Health Study

I Genetic differentiation among individuals is associated with the
geography of their countries of grandparental origin.
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Genetic Analysis of Admixed Populations

Inferring Population Structure in TOPMed Phase I

TOPMed Phase I: Population Structure Inference

I TOPMed cohorts are multi-ethnic

I Variety of study designs: family-based, case-control, founder
populations (Amish).

I PC-AiR algorithm applied to TOPMed Phase I data

I Variants with minor allele frequency > 1% (common variants)
were used for population structure inference
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Genetic Analysis of Admixed Populations

Inferring Population Structure in TOPMed Phase I

TOPMed Phase I: PC-AiR
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Genetic Analysis of Admixed Populations

Inferring Population Structure in TOPMed Phase I

TOPMed Phase I: PC-AiR
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Genetic Analysis of Admixed Populations

Inferring Population Structure in TOPMed Phase I

TOPMed Phase I: PC-AiR
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Introduction
• To date, millions of genomes have been interrogated for 

the identification of genetic variants influencing 
complex traits related to human health and diseases

• Whereas genetic studies have primarily examined 
populations of European ancestry, there has been 
significant efforts in recent years to increase the diversity 
study participants

• Genetic complex trait mapping in multi-ethnic cohort 
studies offer unprecedented opportunities for:  
§ Identification of novel population-specific variants underlying 

phenotypic diversity 
§ new insights into human health and  health disparities of 

underrepresented minority populations for many complex 
diseases



Popejoy and Fullerton (Nature, 2016)

Current State of Affairs



Over-representation of European 
Populations in Genetic Studies 

• Biased 
understanding 
of which 
variants are 
important

• Potential for 
new health 
care 
inequalities

Popejoy and Fullerton. Nature, 
2016
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Need for Genetic Studies 
in Diverse  Populations

• Medical genomics has focused almost entirely on those of 
European descent. 

• Other race and ethnic groups must be studied to ensure that 
more people benefit 

Bustamante et al. (Nature, 2011)



Genetic Studies in Multi-Ethnic 
Populations

• There remain significant challenges 
with complex trait mapping in multi-
ethnic populations

• Two well know challenges are:
§ Heterogeneous genetic ancestry and 

environmental backgrounds among sampled 
individuals

§ Correlated genotype and phenotype data 
among relatives, known and/or cryptic, in the 
sample



Confounding is a serious concerns for genetic 

studies in multi-ethnic populations 

• Ethnic groups (and subgroups) have often share 
distinct dietary habits and other lifestyle 
characteristics that result in traits of interest having 
different distributions that are correlated with 
genetic ancestry and/or ethnicity. 



Confounding: multi-ethnic studies

• is a vector of phenotypes
• is an additive genotype count vector for a SNP s, where 

each entry corresponds to the number of reference alleles (A) 
an individual has, e.g., 0, 1, or 2;

•

Y
gs

Y = β01+ gsβ1 + ε

ε ~ N(0,σ e
2I)



Confounding: multi-ethnic studies

• The relationship between phenotype vector (Y) and 
genotype vector (G) looks much less interesting when 
broken down and assessed within ancestry groups;

• Well known that the genetic ancestry is a confounder in 
multi-ethnic studies that can lead to spurious associations



Genetic Ancestry Inference and Adjustment

• In practice, multi-ethnic cohort studies will not have 
discrete or a fixed number of ancestry groups. 

• In addition, admixed populations have ancestry 
from multiple ancestral groups

• As previously discussed, principal components 
analysis (PCA) is widely used to infer population 
structure from genetic data

• Principal components (PCs) can also be used as 
surrogates for ancestry (or population structure) to 
protect against spurious association in genetic 
association studies
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Adjusting for Genetic Ancestry 
• The top PCs are often included as fixed effects in 

regression models used for assessing 
genotype/phenotype associations in samples with 
population structure

i.e., regression model adjusting for PC1, PC2, PC3 etc. 
(Logistic, Cox regression can be adjusted similarly)
• Among people with the same ancestry (i.e. the 

same PCs)        gives us the difference in mean 
phenotype, per 1-unit difference in 

• If the effect of      differs by PCs,     provides a 
(sensible) average of these genetic effects

E Y( ) = β01+ gsβ1 + γ 1PC1 + γ 2PC2 + γ 3PC3 +!

1

Table 1: Genomic Control �GC for Association Testing Simulation Study

Method Genome-Wide Highly
a

Moderately
b

Lowly
c

Di↵erentiated Di↵erentiated Di↵erentiated

MMAAPS 0.998 (0.007) 0.999 (0.022) 0.998 (0.013) 0.998 (0.009)

EMMAX 0.998 (0.006) 1.079 (0.031) 1.011 (0.013) 0.980 (0.009)

GEMMA 1.002 (0.006) 1.091 (0.033) 1.015 (0.013) 0.981 (0.009)

EIGENSTRAT 1.022 (0.017) 1.024 (0.029) 1.021 (0.021) 1.022 (0.018)

Linear Reg. 13.23 (1.089) 86.72 (7.655) 33.85 (2.986) 4.714 (0.355)

a
Highly di↵erentiated SNPs: |Ds| • 0.4 between the two ancestral populations.

b
Moderately di↵erentiated SNPs: 0.4 ° |Ds| • 0.2 between the two ancestral populations.

c
Lowly di↵erentiated SNPs: |Ds| † 0.2 between the two ancestral populations.

Table 2: Power for LMM Methods with h2s “ 0.0075

Method Genome-Wide
Highly

a
Moderately

b
Lowly

c

Di↵erentiated Di↵erentiated Di↵erentiated

Power at Level ↵ “ 5x10
´8

MMAAPS 0.1867 0.1488 0.1809 0.1962

EMMAX 0.1742 0.1488 0.1668 0.1823

GEMMA 0.1759 0.1546 0.1695 0.1828

Power at Level ↵ “ 5x10
´6

MMAAPS 0.4993 0.4435 0.4905 0.5134

EMMAX 0.4792 0.4290 0.4757 0.4896

GEMMA 0.4823 0.4377 0.4791 0.4916

a
Highly di↵erentiated SNPs: |Ds| • 0.4 between the two ancestral populations.

b
Moderately di↵erentiated SNPs: 0.4 ° |Ds| • 0.2 between the two ancestral populations.

c
Lowly di↵erentiated SNPs: |Ds| † 0.2 between the two ancestral populations.

Y “ gs�s `XXX↵ ` ✏ with ✏ „ N
`
0,⌃ ” �2

A ` �2
✏ III

˘
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Challenges in understanding and using  
Race/Ethnicity in Medicine



Personalized Medicine: 
Pharmacogenomics 
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Substantial Ethnic/Racial Disparities 
in Pharmacogenomics Research 

1 Treat with alternative
drug or dose

Genetic profile for
non-response
or toxicity

Treat with 
conventional
drug or dose

Genetic profile for
favorable response

2
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Example: Asthma Health 
Disparities

• These disparities extend to asthma mortality, which 
is 3- to 4-fold higher in Puerto Ricans and African 
Americans compared to Whites and Mexicans. 

• Albuterol is the most commonly prescribed asthma 
medication in the world.

• Dr. Esteban Burchard (UCSF) and colleagues  
leading Genetics of Asthma in Latino Americans 
(GALA) and Study of African Americans, Asthma, 
Genes, & Environments (SAGE)
o Marked differences in drug response to Albuterol  

between racial and ethnic groups, which 
contribute to health disparities in asthma 
morbidity and mortality. 
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~334M Globally

Akinbami L. CDC/NCHS
NHLBI Study of Latinos (SOL)
Barr et. ai., AJRCCM 2016



Americans

GALA: Children with Moderate-to-Severe 
Asthma

Naqvi, M, J. of Asthma, 2007  
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Courtesy of  Dr. Esteban Burchard; UCSF



Salmeterol tiny Black Box 
Warning

• Salmeterol is used in moderate-to-severe persistent 
asthma following previous treatment with a short-
acting β2 adrenoreceptor agonist(SABA) such 
as salbutamol (albuterol).

• However, African Americans, beware!

“In African Americans, asthma-related deaths occurred 
at a higher rate in patients treated with Salmeterol than 
those treated with placebo (..relative risk: 7.26..)…”

https://en.wikipedia.org/wiki/Beta2-adrenergic_agonist
https://en.wikipedia.org/wiki/Salbutamol


Pharmacogenomics in Diverse 
Populations: Cytochrome P450s 

• The Cytochromes P450 (CYPs) constitute a major 
drug metabolizing enzyme family that catalyzes the 
oxidative metabolism of many clinically used 
compounds in pharmaceutics. 

• CYP genes play a major role in inter-individual 
differences in drug response.

• CYPs have been well studied in European 
Populations,

• Little is known, however, about CYPs and 
pharmacogenetic variation in diverse populations



Northwest-Alaska Pharmacogenetic
Research Network

• Support community-university 
partnerships

• Discover and characterize novel 
variation among American Indian and 
Alaska Native (AI/AN) people

• Identify genetic and dietary factors that 
influence drug response in AI/AN 
populations
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• Fohner et al. [Pharmacogenet Genomics, 2013]

“The combination of nonfunctional CYP3A5*3 and 
putative reduced function CYP3A4*1G alleles may predict 
diminished clearance of CYP3A substrates in American 
Indian Populations”

Pharmacogenomics in AI/AN



Gage et al., Thromb Haemost. (2004)
Dang et al., Ann. Pharmacother. (2005)

•Wafarin is a medication that is used as an anticoagulant (blood thinner). 
Commonly used to treat used to treat blood clots such as deep vein thrombosis and 
pulmonary embolism and to prevent stroke in people who have atrial fibrillation
• Clinical and demographic factors estimated to contribute 20% to warfarin 
dose variance
•

Clinical and Demographic Factors Affecting Warfarin Dose

22

Mean weekly warfarin 
dose (95% CI) adjusted 
for age, gender, weight, 
disease and potentially 
interacting drugs



• Fohner et al. [Pharmacogenet Genomics, 2015]

“We identified two relatively common, novel, and 
potentially function-disrupting variants in CYP2C9 (M1L 
and N218I)”

"Overall, we predict a lower average warfarin dose 
requirement in AI/AN populations in Alaska than that seen 
in non-AI/AN populations of the US, a finding consistent 
with clinical experience in Alaska."



• The primary outcome was stable warfarin dose, defined as one dose, and associated 
international normalized ratio (INR) within the target range, at least 6 months after starting 
therapy, with two matching doses at least 2 weeks apart.

• VKORC1 genotype explained 34% of dose variability,



• Causal variant occurs more often on segments 
inherited from the ancestral population with the 
higher disease variant frequency

• Admixture mapping, leverages heterogeneity in 
genetic ancestry of admixed individuals by 
identifying loci harboring variants that are

• Associated with a trait
• Have differing allele frequencies across the ancestral populations

• In case-control studies, admixture mapping 
identifies loci with significant differences in 
ancestry between cases and controls

Can genetic ancestry be leveraged 
for new genetic insights?



Admixture Mapping



• Genetic studies of Alzheimer’s disease (AD) have 
primarily been conducted in European ancestry 
populations 

• APOE has long stood at the forefront of common 
genetic risk factors for AD in European ancestry 
populations 
o APOE ε4 and ε2  isoforms are  most consistent risk and protective variants for AD 

in European ancestry populations

• Effects of risk and protective variants for AD identified in 
European populations, however, are often not 
transferable across populations

Example: APOE and AD Risk in 
Diverse Populations



Example: APOE and AD Risk in 
Diverse Populations

• Conflicting evidence of associations between APOE
and AD in ancestrally diverse populations 
o Hispanic/Latino and African American populations have APOE effect sizes that 

are orders of magnitude smaller than European ancestry populations 

• Significant challenges to disentangle and understanding 
the complex relationships of APOE, AD, and ancestry

• Differential effect sizes of APOE alleles across 
populations

• APOE ε4 allele frequency varies considerably worldwide
o More common in African populations than in European ancestry populations
o Less common in Latino/Hispanic populations



• Recent studies by Rajabli et al (2018)and Blue et al 
(2019) and investigated APOE and AD risk in recently 
admixed populations: Caribbean Hispanics and 
African Americans

• Focused on ancestral origin and effects at APOE 
locus for European, African, and Native American 
ancestry

• Will focus on the Blue et al (2019) as an example of 
leveraging local ancestry differences for new insights 
into APOE  

APOE Ancestral Origin



• Blue et al. (2019) first investigated if protective and risk effects 
of APOE ε2 and ε4 dosage, respectively, on AD were similar in  
European Ancestry (EA) vs. Caribbean Hispanic (CH) 
populations

• Conducted a survival analysis and compared age of onset of 
AD  using  Cox Proportional Hazards regression in similarly sized 
EA and CH cohorts

• The effect of ε2 and ε4 on the hazard of AD were significantly 
different by multiple orders of magnitude
o ε2 Hazard Ratio (95%CI): 0.28 (0.19-0.40) in Europeans vs. 

0.66 (0.54-0.81) in Hispanics
o ε4 Hazard Ratio (95%CI): 3.44 (3.08-3.83) in Europeans vs. 

1.98 (1.80-2.19) in Hispanics

Survival Analysis of AD in Diverse 
Samples 



ε2

ε4

Blue et al. (2019) Alzheimer’s & Dementia 15 (12): 1524-1532

Survival curves by allele count

Survival analysis of AD in Diverse Samples

https://pubmed.ncbi.nlm.nih.gov/31606368/


Risk of AD and Global 
Ancestry

• Blue et al. (2019) also found differences in APOE ε4 effects on AD 
risk in EA and CH populations for AD:
o Europeans: Odds Ratio  =  15.89
o Hispanics: Odds Ratio = 4.59

• However, genome-wide average ancestry proportions couldn't 
explain  differences in AD effects

• They next focused on investigating the role that ancestry of origin 
of APOE may in effects. 

• Identified a subset of CH individuals and compared odds of AD 
for  individuals who were homozygous for either E3 or E4 and had 
either  100% EUR or 100% AFR ancestry of origin at APOE 



APOE Ancestry of origin 
and AD risk

• Local ancestry at the APOE locus influences AD risk 
independently of ε2/ε3/ε4 genotype in CH
o Those inheriting APOE alleles on an African haplotype are associated 

with 39% lower odds of AD compared to those inheriting alleles on a 
European haplotype 

Blue et al. (2019) Alzheimer’s & Dementia 15 (12): 1524-
1532

Covariate Odds Ratio  (95% CI)

APOE ε4/ε4 genotype 8.5935  (4.49-16.43)

% global AMR ancestry 1.0334  (1.00-1.06)

% global AFR ancestry 1.0042  (0.99-1.01)

local AFR ancestry at APOE 0.6058  (0.38-0.97)

Age (years) 1.0245  (1.01-1.04)

Logistic regression for AD among subjects homozygous 
for either African- or European-derived ε3 or ε4 alleles 
in the Caribbean Hispanics

https://pubmed.ncbi.nlm.nih.gov/31606368/


• Blue et al. (2019) provided significant evidence  that there is 
more to the relationship between APOE and AD than the 
missense variants defining the ε2/ε3/ε4 alleles.

• These missense variants are believed to be the functional 
variants driving the association between APOE and AD risk and 
age-at-onset. 

• However, since local ancestry near APOE is also associated 
with AD risk after adjustment for APOE genotype indicates that 
additional coding and/or non-coding variants which differ in 
frequency between Europeans and Africans also influence an 
individual’s risk of AD. 

APOE Ancestry of origin 
and AD risk



Future of Genetic Studies in Diverse 
Populations

• Many variants previously identified in European 
ancestry populations have been found in to either 
(1) not be transferable across multi-ethnic 
populations or (2) have significantly smaller effects

• Little is known about the biological mechanisms 
contributing to this phenomenon, and significantly 
more and larger genetics studies in ancestrally 
diverse populations are needed

• Understanding the role that genetic ancestry plays, 
both locally and globally, in health  and health 
disparities will be critical in the effectiveness of 
precision or personalized medicine in ancestrally 
diverse populations
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