Lecture 7 Principal Component Analysis (PCA)

CREIGS 2020

Lewis E Tomalin, PhD
Assistant Professor of Biostatistics

Icahn School of Medicine at Mount Sinai
Department of Population Health Science \& Policy

Mount Sinai

Lecture Overview

1. Part 1: Introduction to PCA

1. What is PCA used for?
2. What is a principle component?
3. How to interpret PCA results
4. Mathematics underlying PCA

2. Part 2: Performing PCA in R

1. Installing packages
2. Formatting the data
3. Running PCA
4. Making plots

What is PCA used for?

When working with 'high-throughput' data such as DNA/RNA-seq, each sample can have measurements of 100's or even 10,000's of genes.

This high-number of 'features/variables/dimension' makes the data hard to interpret.
PCA is an un-supervised modelling technique, that decreases the number of dimensions in the data and thus helps us visualize characteristics of the data. In RNA-seq we can use PCA to answer two important questions:

1. Do samples with similar/different phenotypes have similar/different geneexpression profiles?
2. This is an important QC check, eg: do samples taken pre-treatment have similar expression profiles?
3. Do post-treatment samples look different to pre-treatment?
4. Which genes are most responsible for these similarities/differences?
5. PCA can provide a rough indication of which genes are different, however, there are 'better' methods for properly answering this question.

What is PCA?

Terminology

The First Principle Component (PC1): The First Principle Component is a line/plane in the data that explains most of the variation in that data. This plane will have fewer dimensions that the the original data.
The Second Principle Component (PC2): The First Principle Component is a line/plane in the data, perpendicular to PC1 that explains the 2nd most of the variation in that data.

Dimension Reduction: PCA is sometimes referred to as a 'dimension reduction' technique, since it can summarize large dimensional data into smaller dimensions. le: summarize 1,000 genes/dimensions into just 2 components/dimensions.

Interpreting a PCA plot

Example\#1: Skin samples were taken from Psoriasis patients before treatment, samples of diseased skin and normal skin were taken, gene-expression profiles were measured and PCA was performed.

Interpretation

- Samples that are close together have similar gene-expression profiles.
- Disease skin expression profiles are different to Normal skin.
- PC1 by definition represents most of the variation.
- Since skin type varies across PC1 we can say that Skin type accounts for most of the variation in the data.

Interpreting a PCA plot

Example\#2: Skin samples were taken from Psoriasis patients before and after treatment (1 month and 3 months). Samples of diseased skin and normal skin were taken, gene-expression profiles were measured and PCA was performed.

Interpretation

- Post treatment skin has similar profile to Normal skin, suggesting that treatment worked in these patients.
- Some samples still look diseased, perhaps these patients did not respond.

Interpreting a PCA plot

Bad Examples

- One sample is completely different to the rest, check this sample, probably just delete it.
- Samples analyzed on same date are grouped together, suggests a batch effect, consider batch adjustment.

Tissue

- Disease
- Normal

Batch Effect

Batch.Month

- 04
- 05
- 06
- 07
- 08

Mathematics of PCA (how are PCs calculated)

- You do not need to fully understanding how to calculate a PC in order to use it in your research (you don't need to know how an engine works to drive a car)
- However, understanding the mathematics will help you understand and understand PCA at a deeper level, and will also help you understand other/similar techniques.
- I will give a brief introduction here, but I recommend watching the Chapter 10 videos on the following site to get the details (https://www.r-bloggers.com/2014/09/in-depth-introduction-to-machine-learning-in-15-hours-of-expert-videos/). (goldilocks zone)
- PC1 $\left(Z_{1}\right)$ is calculated using the formula: $Z_{1}=\boldsymbol{\phi}_{1} X_{1}+\boldsymbol{\phi}_{2} X_{2}+\cdots+\boldsymbol{\phi}_{p} \boldsymbol{X}_{p}$, where X is the expression of each gene p, and values for each ϕ are optimized to maximize the variation whilst constraining the sum as all ϕ^{2} to be equal to 1 .
- Thus genes that contribute most to the variation will have higher ϕ values, which are often referred to a weights or loadings.

Mathematics of PCA (deeper dive)

- Let's use a toy example to really breakdown how the loadings for PC1 are estimated.
- Imagine we have $\mathbf{1 0}$ samples, with measurements for 2 genes, GeneA and GeneB.

SampleID	GeneA	GeneB
S1	5.1	-3.6
S2	-5.6	-2.6
S3	-3.3	0.5
S4	3.4	6.4
S5	1.6	5.6
S6	-8.5	-3.6
S7	1.8	-5.3
S8	4.6	3.8
S9	-1.2	3.0
S10	0.7	0.3
Var	20.1	17.2

$Z_{1}=\phi_{A} X_{A}+\phi_{B} X_{B}$
Let's choose some weights $\phi_{A}=1, \phi_{B}=0$:

Mathematics of PCA (deeper dive)

- Let's use a toy example to really breakdown how the loadings for PC1 are estimated.
- Imagine we have $\mathbf{1 0}$ samples, with measurements for 2 genes, GeneA and GeneB.

SampleID	GeneA	GeneB
S1	5.1	-3.6
S2	-5.6	-2.6
S3	-3.3	0.5
S4	3.4	6.4
S5	1.6	5.6
S6	-8.5	-3.6
S7	1.8	-5.3
S8	4.6	3.8
S9	-1.2	3.0
S10	0.7	0.3
Var	20.1	17.2

$Z_{1}=\phi_{A} X_{A}+\phi_{B} X_{B}$
Let's choose some weights $\boldsymbol{\phi}_{A}=1, \boldsymbol{\phi}_{B}=0$:

Mathematics of PCA (deeper dive)

- Let's use a toy example to really breakdown how the loadings for PC1 are estimated.
- Imagine we have $\mathbf{1 0}$ samples, with measurements for 2 genes, GeneA and GeneB.

SampleID	GeneA	GeneB
S1	5.1	-3.6
S2	-5.6	-2.6
S3	-3.3	0.5
S4	3.4	6.4
S5	1.6	5.6
S6	-8.5	-3.6
S7	1.8	-5.3
S8	4.6	3.8
S9	-1.2	3.0
S10	0.7	0.3
Var	20.1	17.2

$$
Z_{1}=\phi_{A} X_{A}+\phi_{B} X_{B}
$$

Let's choose some weights $\phi_{A}=1, \phi_{B}=0$: Just uses GeneA values for variance calculation. Var=20.1

Mathematics of PCA (deeper dive)

- Let's use a toy example to really breakdown how the loadings for PC1 are estimated.
- Imagine we have $\mathbf{1 0}$ samples, with measurements for 2 genes, GeneA and GeneB.

SampleID	GeneA	GeneB
S1	5.1	-3.6
S2	-5.6	-2.6
S3	-3.3	0.5
S4	3.4	6.4
S5	1.6	5.6
S6	-8.5	-3.6
S7	1.8	-5.3
S8	4.6	3.8
S9	-1.2	3.0
S10	0.7	0.3
Var	20.1	17.2

$$
Z_{1}=\phi_{A} X_{A}+\phi_{B} X_{B}
$$

Let's choose some more weights $\phi_{A}=0, \phi_{B}=1$:

Mathematics of PCA (deeper dive)

- Let's use a toy example to really breakdown how the loadings for PC1 are estimated.
- Imagine we have 10 samples, with measurements for 2 genes, GeneA and GeneB.

SampleID	GeneA	GeneB
S1	5.1	-3.6
S2	-5.6	-2.6
S3	-3.3	0.5
S4	3.4	6.4
S5	1.6	5.6
S6	-8.5	-3.6
S7	1.8	-5.3
S8	4.6	3.8
S9	-1.2	3.0
S10	0.7	0.3
Var	20.1	17.2

$Z_{1}=\phi_{A} X_{A}+\phi_{B} X_{B}$
Let's choose some more weights $\boldsymbol{\phi}_{A}=0, \boldsymbol{\phi}_{B}=1$: Essentially the variance of GeneB, var=17.2

	Wt_1	Wt_2	$\mathbf{W t}$ _3
$\boldsymbol{\phi}_{\boldsymbol{A}}$	1	0	
$\boldsymbol{\phi}_{\boldsymbol{B}}$	0	1	
$\left(\boldsymbol{\phi}_{A}^{2}+\boldsymbol{\phi}_{B}^{2}\right)$	1	1	
Var	20.1	17.2	

Mathematics of PCA (deeper dive)

- Let's use a toy example to really breakdown how the loadings for PC1 are estimated.
- Imagine we have $\mathbf{1 0}$ samples, with measurements for 2 genes, GeneA and GeneB.

SampleID	GeneA	GeneB
S1	5.1	-3.6
S2	-5.6	-2.6
S3	-3.3	0.5
S4	3.4	6.4
S5	1.6	5.6
S6	-8.5	-3.6
S7	1.8	-5.3
S8	4.6	3.8
S9	-1.2	3.0
S10	0.7	0.3
Var	20.1	17.2

$Z_{1}=\phi_{A} X_{A}+\phi_{B} X_{B}$
Let's choose a third set of weights $\phi_{A}=-0.8, \phi_{B}=-0.6:$

	Wt_1	Wt_2	Wt_3
$\boldsymbol{\phi}_{\boldsymbol{A}}$	1	0	-0.8
$\boldsymbol{\phi}_{\boldsymbol{B}}$	0	1	-0.6
$\left(\boldsymbol{\phi}_{A}^{2}+\boldsymbol{\phi}_{B}^{2}\right)$	1	1	1
Var	20.1	17.2	

Mathematics of PCA (deeper dive)

- Let's use a toy example to really breakdown how the loadings for PC1 are estimated.
- Imagine we have $\mathbf{1 0}$ samples, with measurements for 2 genes, GeneA and GeneB.

SampleID	GeneA	GeneB
S1	5.1	-3.6
S2	-5.6	-2.6
S3	-3.3	0.5
S4	3.4	6.4
S5	1.6	5.6
S6	-8.5	-3.6
S7	1.8	-5.3
S8	4.6	3.8
S9	-1.2	3.0
S10	0.7	0.3
Var	20.1	17.2

$$
Z_{1}=\phi_{A} X_{A}+\phi_{B} X_{B}
$$

Let's choose a third set of weights

$$
\phi_{A}=-0.8, \phi_{B}=-0.6
$$

Use these weights calculate new data points for each sample.
The variance of these new points is 25.6. Higher than the other weights.

	Wt_1	Wt_2	Wt_3
$\boldsymbol{\phi}_{\boldsymbol{A}}$	1	0	-0.8
$\boldsymbol{\phi}_{\boldsymbol{B}}$	0	1	-0.6
$\left(\boldsymbol{\phi}_{A}^{2}+\boldsymbol{\phi}_{B}^{2}\right)$	1	1	1
Var	20.1	17.2	

SampleID	$\left(\mathrm{GA}^{*}-0.8\right)$	$\left(\mathrm{GB}^{*}-0.6\right)$	SUM
S1	-4.0	2.3	-1.7
S2	4.4	1.6	6.0
S3	2.6	-0.3	2.3
S4	-2.6	-4.0	-6.6
S5	-1.3	-3.5	-4.8
S6	6.6	2.2	8.9
S7	-1.4	3.3	1.9
S8	-3.6	-2.4	-5.9
S9	0.9	-1.9	-0.9
S10	-0.5	-0.2	-0.7
Var			25.6

Thank You

