Lecture 7 Principal Component Analysis (PCA)

CREIGS 2020

Lewis E Tomalin, PhD Assistant Professor of Biostatistics

Icahn School of Medicine at Mount Sinai Department of Population Health Science & Policy

Lecture Overview

1. Part 1: Introduction to PCA

- 1. What is PCA used for?
- 2. What is a principle component?
- 3. How to interpret PCA results
- 4. Mathematics underlying PCA

2. Part 2: Performing PCA in R

- 1. Installing packages
- 2. Formatting the data
- 3. Running PCA
- 4. Making plots

What is PCA used for?

When working with 'high-throughput' data such as DNA/RNA-seq, each sample can have measurements of 100's or even 10,000's of genes.

This high-number of 'features/variables/dimension' makes the data hard to interpret.

PCA is an un-supervised modelling technique, that decreases the number of dimensions in the data and thus helps us visualize characteristics of the data.

In RNA-seq we can use PCA to answer two important questions:

- 1. Do samples with similar/different phenotypes have similar/different geneexpression profiles?
 - 1. This is an important QC check, eg: do samples taken pre-treatment have similar expression profiles?
 - 2. Do post-treatment samples look different to pre-treatment?

2. Which genes are most responsible for these similarities/differences?

1. PCA can provide a rough indication of which genes are different, however, there are 'better' methods for properly answering this question.

What is PCA?

Terminology

The First Principle Component (PC1): The First Principle Component is a line/plane in the data that explains most of the variation in that data. This plane will have fewer dimensions that the the original data.

The Second Principle Component (PC2): The First Principle Component is a line/plane in the data, perpendicular to PC1 that explains the 2nd most of the variation in that data.

Dimension Reduction: PCA is sometimes referred to as a 'dimension reduction' technique, since it can summarize large dimensional data into smaller dimensions. Ie: summarize 1,000 genes/dimensions into just 2 components/dimensions.

Interpreting a PCA plot

Example#1: Skin samples were taken from Psoriasis patients before treatment, samples of <u>diseased skin</u> and <u>normal skin</u> were taken, gene-expression profiles were measured and PCA was performed.

Interpretation

- Samples that are close together have similar gene-expression profiles.
- Disease skin expression profiles are different to Normal skin.
- PC1 by definition represents most of the variation.
- Since skin type varies across PC1 we can say that Skin type accounts for most of the variation in the data.

Interpreting a PCA plot

Example#2: Skin samples were taken from Psoriasis patients before and after treatment (1 month and 3 months). Samples of <u>diseased skin</u> and <u>normal skin</u> were taken, gene-expression profiles were measured and PCA was performed.

Interpretation

- Post treatment skin has similar profile to Normal skin, suggesting that treatment worked in these patients.
- Some samples still look diseased, perhaps these patients did not respond.

Interpreting a PCA plot

Bad Examples

- One sample is completely different to the rest, check this sample, probably just delete it.
- Samples analyzed on same date are grouped together, suggests a batch effect, consider batch adjustment.

Mathematics of PCA (how are PCs calculated)

•

•

•

You do not need to fully understanding how to calculate a PC in order to use it in your research (you don't need to know how an engine works to drive a car)

- However, understanding the mathematics will help you understand and understand PCA at a deeper level, and will also help you understand other/similar techniques.
- I will give a brief introduction here, but I recommend watching the Chapter 10 videos on the following site to get the details (<u>https://www.r-bloggers.com/2014/09/in-depth-introduction-to-machine-learning-in-15-hours-of-expert-videos/</u>). (goldilocks zone)
- PC1 (Z₁) is calculated using the formula: $Z_1 = \phi_1 X_1 + \phi_2 X_2 + \dots + \phi_p X_p$, where X is the expression of each gene *p*, and values for each ϕ are optimized to maximize the variation whilst constraining the sum as all ϕ^2 to be equal to 1.
- Thus genes that contribute most to the variation will have higher ϕ values, which are often referred to a weights or loadings.

- Let's use a toy example to really breakdown how the loadings for PC1 are estimated.
- Imagine we have **10 samples**, with measurements for 2 genes, **GeneA** and **GeneB**.

 $Z_1 = \phi_A X_A + \phi_B X_B$

Let's choose some weights

$$\phi_A = 1, \phi_B = 0$$
:

	Wt_1	Wt_2	Wt_3
ϕ_A	1		
ϕ_B	0		
$(\boldsymbol{\phi}_A^2 + \boldsymbol{\phi}_B^2)$	1		
Var			

- Let's use a toy example to really breakdown how the loadings for PC1 are estimated.
- Imagine we have **10 samples**, with measurements for 2 genes, **GeneA** and **GeneB**.

$$Z_1 = \phi_A X_A + \phi_B X_B$$

Let's choose some weights

$$\phi_A = 1, \ \phi_B = 0$$
:

	Wt_1	Wt_2	Wt_3
ϕ_A	1		
ϕ_B	0		
$(\boldsymbol{\phi}_A^2 + \boldsymbol{\phi}_B^2)$	1		
Var			

- Let's use a toy example to really breakdown how the loadings for PC1 are estimated.
- Imagine we have **10 samples**, with measurements for 2 genes, **GeneA** and **GeneB**.

$$Z_1 = \phi_A X_A + \phi_B X_B$$

Let's choose some weights

 ϕ_A = 1, ϕ_B = 0: Just uses GeneA values for variance calculation. Var=20.1

	Wt_1	Wt_2	Wt_3
ϕ_A	1		
ϕ_B	0		
$(\boldsymbol{\phi}_A^2 + \boldsymbol{\phi}_B^2)$	1		
Var	20.1		

- Let's use a toy example to really breakdown how the loadings for PC1 are estimated.
- Imagine we have **10 samples**, with measurements for 2 genes, **GeneA** and **GeneB**.

$$Z_1 = \phi_A X_A + \phi_B X_B$$

Let's choose some more weights

$$\phi_A = 0, \ \phi_B = 1$$
:

	Wt_1	Wt_2	Wt_3
ϕ_A	1	0	
ϕ_B	0	1	
$(\boldsymbol{\phi}_A^2 + \boldsymbol{\phi}_B^2)$	1	1	
Var	20.1		

- Let's use a toy example to really breakdown how the loadings for PC1 are estimated.
- Imagine we have **10 samples**, with measurements for 2 genes, **GeneA** and **GeneB**.

$$Z_1 = \phi_A X_A + \phi_B X_B$$

Let's choose some more weights

 ϕ_A = 0, ϕ_B = 1: Essentially the variance of GeneB, var=17.2

	Wt_1	Wt_2	Wt_3
ϕ_A	1	0	
ϕ_B	0	1	
$(\boldsymbol{\phi}_A^2 + \boldsymbol{\phi}_B^2)$	1	1	
Var	20.1	17.2	

- Let's use a toy example to really breakdown how the loadings for PC1 are estimated.
- Imagine we have **10 samples**, with measurements for 2 genes, **GeneA** and **GeneB**.

$$Z_1 = \phi_A X_A + \phi_B X_B$$

Let's choose a third set of weights

$$\phi_A$$
= -0.8, ϕ_B = -0.6:

	Wt_1	Wt_2	Wt_3
ϕ_A	1	0	-0.8
ϕ_B	0	1	-0.6
$(\boldsymbol{\phi}_A^2 + \boldsymbol{\phi}_B^2)$	1	1	1
Var	20.1	17.2	

- Let's use a toy example to really breakdown how the loadings for PC1 are estimated.
- Imagine we have **10 samples**, with measurements for 2 genes, **GeneA** and **GeneB**.

5

.

		GeneB	GeneA	SampleID	
		-3.6	5.1	S 1	
	5 -	-2.6	-5.6	S 2	
•		0.5	-3.3	S 3	
	~	6.4	3.4	S 4	
• •	eneE	5.6	1.6	S5	
	G	-3.6	-8.5	S 6	
•		-5.3	1.8	S 7	
	-5 -	3.8	4.6	S 8	
		3.0	-1.2	S 9	
		0.3	0.7	S10	
-5 0		17.2	20.1	Var	
GeneA					

	Wt_1	Wt_2	Wt_3
ϕ_A	1	0	-0.8
ϕ_B	0	1	-0.6
$(\boldsymbol{\phi}_A^2 + \boldsymbol{\phi}_B^2)$	1	1	1
Var	20.1	17.2	

$$Z_1 = \phi_A X_A + \phi_B X_B$$

Let's choose a third set of weights

$$\phi_A$$
= -0.8, ϕ_B = -0.6

Use these weights calculate new data points for each sample.

The variance of these new points is **25.6.** Higher than the other weights.

SampleID	(GA*-0.8)	(GB*-0.6)	SUM	
S 1	-4.0	2.3	-1.7	
S2	4.4	1.6	6.0	
S 3	2.6	-0.3	2.3	
S 4	-2.6	-4.0	-6.6	
S5	-1.3	-3.5	-4.8	
S 6	6.6	2.2	8.9	
S 7	-1.4	3.3	1.9	
S 8	-3.6	-2.4	-5.9	
S 9	0.9	-1.9	-0.9	1
S10	-0.5	-0.2	-0.7	
Var			25.6	
				XE

Thank You

