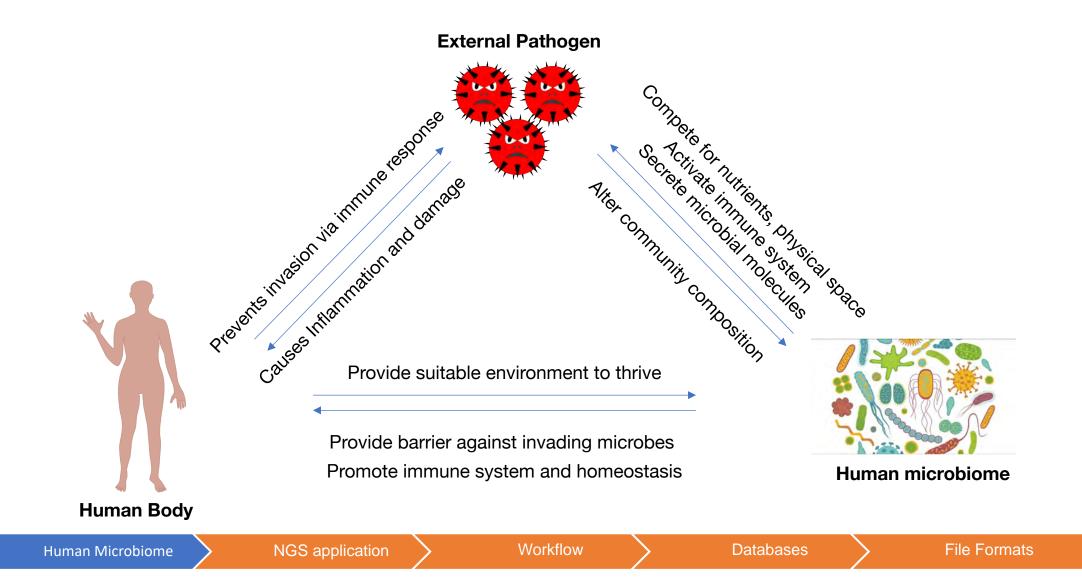

Analyzing Microbial Communities Using Next Generation Sequencing

PART I: Basic Concepts, Databases and Data types


Rounak Feigelman, Ph.D. Senior Scientist, Paragon Genomics Inc.

Introduction: Human Microbiome

Role of Microbiome in Infection

Current Strategies for Pathogen Identification

- 1. Laboratory culture of biological sample (mucus, stool, etc.)
 - + Antibiotic sensitivity
 - + Rapid turn around time, molecular diagnostic assays
 - Low detection rate
 - Scales with the no. of pathogens (one bug, one test)
 - Miss slow growing pathogens
- 2. Next Generation Sequencing diagnostic assays
 - + Enables detection of broad range of pathogens, co-infections
 - + Enables microbiome characterization
 - + Utility in difficult to diagnose cases or immunocompromised patients
 - Data needs analysis and interpretation in clinical context
 - Slow turn around time
 - Require investment in infrastructure for data analysis and storage

Next Generation Sequencing

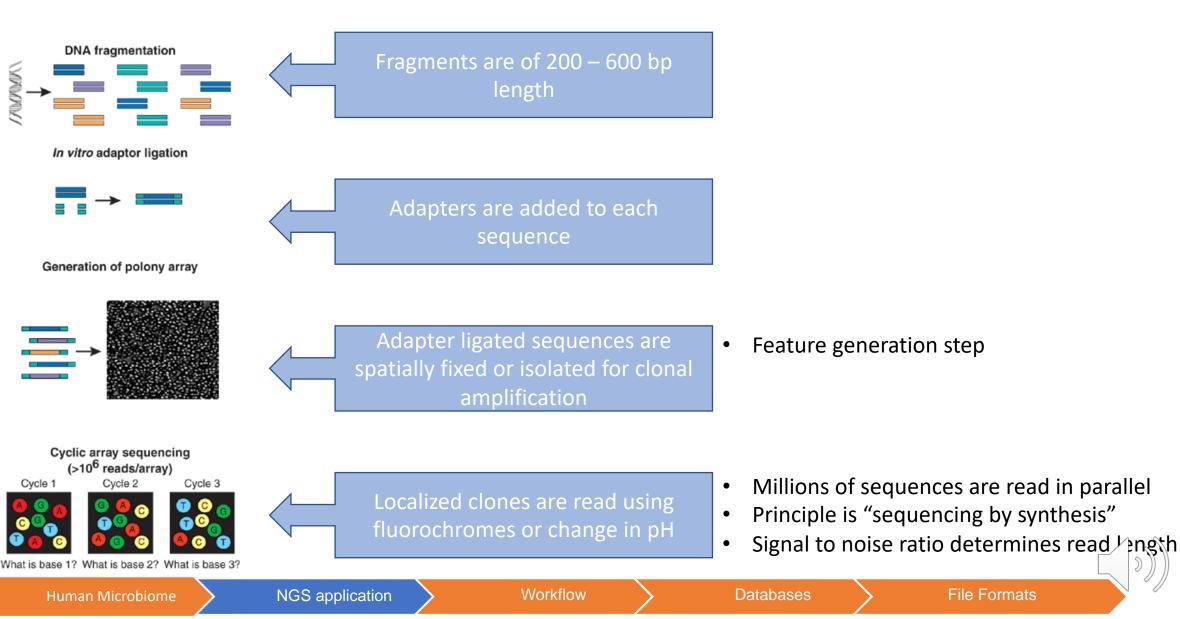
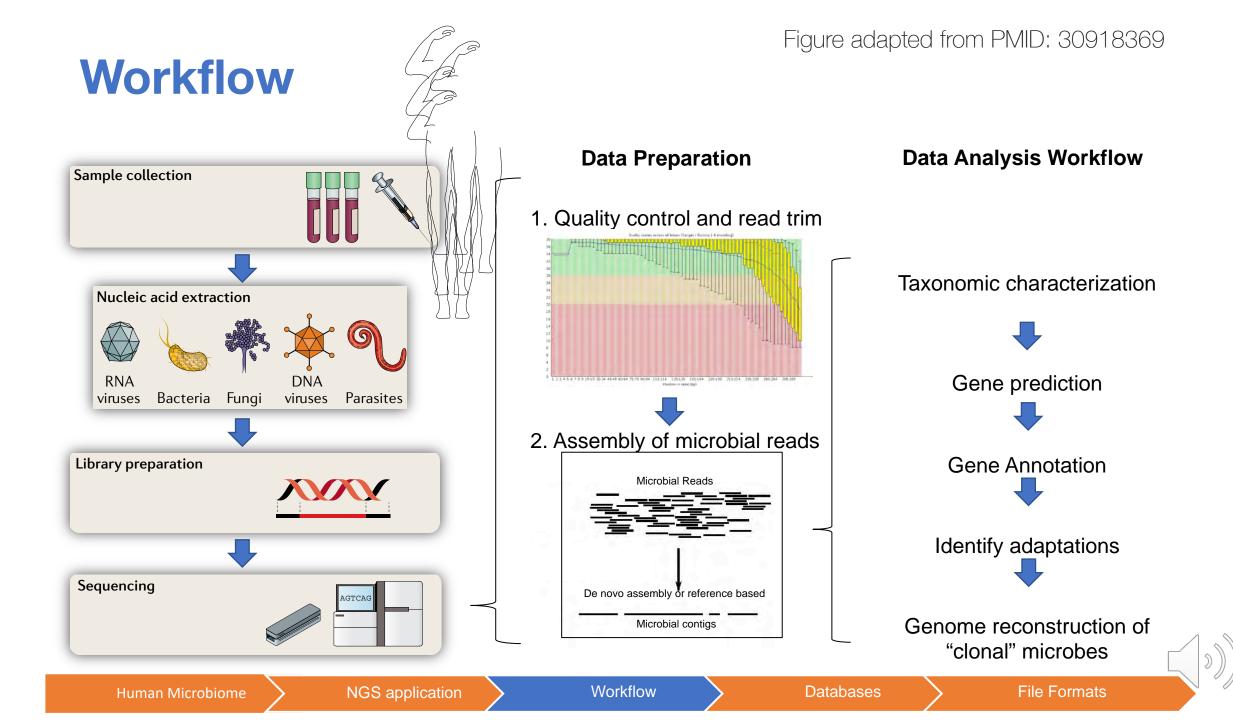
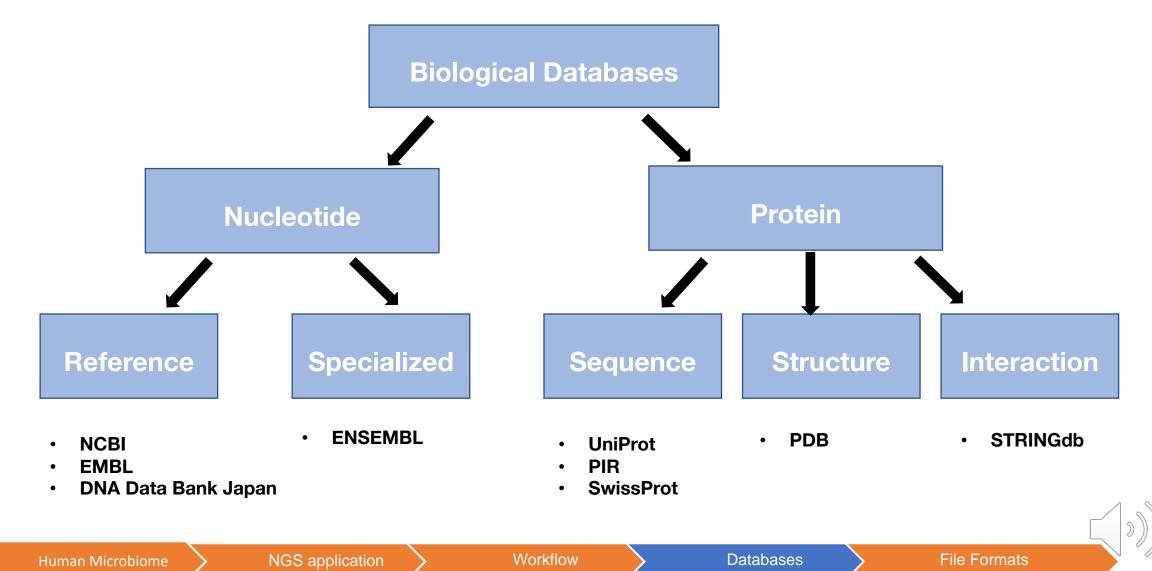


Figure adapted from PMID: 18576944

Next Generation Sequencing Technologies


NGS Technology related specifics

Sequencer	Feature generation	Synthesis mechanism	Read (bp)	Error type
454	Emulsion PCR	Pyrosequencing, PCR	700	Inert-deletion
Illumina	Bridge PCR	Reversible terminators polymerase	150*2	Substitution
SOLiD	Emulsion PCR	ligase	60*2	Substitution
PacBio	Single molecule	Polymerase	1500	Deletion


Next Generation Sequencing Approaches in Clinical Microbiology

Sequencing Method	Potential Application	Type of Data Generated
Amplicon sequencing (universal primer)	Multiplex pathogen detection	16S rRNA gene segments
Amplicon sequencing (targeted primer)	Pathogen identification	Viral genome recovery, variant detection
Capture probe enrichment	Multiplex pathogen detection	Viral genome recovery, variant detection
Untargeted Whole Genome Sequencing (deplete host DNA)	Analyze microbial community	Gene sequences from different members of microbial community.
Untargeted Whole Genome Sequencing (without depletion of host DNA)	Exploratory data	Majority data from host genome with some microbial data

Bioinformatics Databases

Microbial Databases

DNA and protein sequence databases (primary and secondary) 1.

Functional databases 2. microme EggNOG 5.0.0 The Comprehensive Antibiotic Resistance Database

Workflow

Analysis Tools and Software

Taxonomic annotation, gene prediction and functional annotation tools for DNA and protein sequences

Common

INTEGRATED MICROBIAL GENOMES & MICROBIOMES My Analysis Carts: 0 Genomes | 0 Scaffolds | 0 Functions | 0 Genes | 0 Genome Search History | 0 Gene Search History | 0 Scaffold Search History | 0 Bin Search

Quick Genome Search:

Go

Login into IMG/MER

Note is community anotaneous lates intervention					We need your fe	edback IMG	survey	IMG Webinar YouTub	M Function	on Searc	ch						
Latest data, tools, and analysis results for Coronavirides and SARS-CoV-2 arch Analyze Save to Workbench Sign up for a workbench to: Sign up for a workbench to: Sign up for a workbench to: Sign up for a workbench to: Sign up			nmunity Announcements Li	inks Resources Support	IMG Co Datase Bacteria Archaea	ontent ts JGI <u>16857</u> <u>635</u>	Ali <u>85918</u> <u>1984</u>	The Integrated Micr analysis and annotal comparative context datasets provided by	Search	1 Palhwa	ays as sets	s in a compr nome and m	ehensive netagenom	JGI 8	JGI's I	ntegrat	2 1
arch Analyze source of our comprehensive databases for: Analyze data online: Supported for our comprehensive databases for: Analyze data online: Supported for our comprehensive databases for: Analyze data online: Supported for factor bas Phytogenetic Tree Phytogenetic Tree Sequence Variation (SNP) Static Tree Supported Forder Data Analyze data online: Supported Forder Data Mater All Tops Static Tree Supported Forder Data Mater All Tops Supported Forder Data Supported Forder Data Mater All Tops Supported Forder Data Supported Forder Data Ma	Latest data, tools, and	analysis results for Coronaviridae	and SARS-CoV-	.2	Plasmids Viruses	1 6 0	1188 8392 89	IMG provides users	o cog				asets and				
equedness Store and Stared D protein structures D structures <	arch our comprehensive database for:	Analyze data online:	Sign up for a workbend	ch to:	Cell Enrichments Single Particle Sorts	<u>2192</u> 5308	2200 5378	Please cite: IMG - C					ons or pro	posals.			
All Sarch 179es BLAST • VIGOR4 Genome Annotator Browee All Tools Browee All Tools Project Maps: Browee All Tools Browee All Tools Single-Stranded Positive-Sense RNA Single-Stranded Negative-Sense RNA Duble-Stranded Maps	Sequences & strains Immune epitopes 3D protein structures Host Factor Data	 Phylogenetic Tree Sequence Variation (SNP) 	 Combine working set Integrate your data w 	ts vith ViPR data	Last Datasets Added On: Genome	2020-09-21		IMG Statistics	TIGRI	am		MAGs		190	<u>64</u>	View	Citation
Supported Programs Supported Programs Image: NIAID Systems Biology NIAID Systems Biology NIAID Systems Biology NIAID Systems Biology Single-Stranded Negative-Sense RNA Single-Stranded Negative-Sense RNA Single-Stranded RNA Double-Stranded RNA	Antiviral Drugs Plasmid Data Browse All Search Types	VIGOR4 Genome Annotator			Project Maps:			Bacteria			<u>522</u>	<u>8949</u>			425	2	Anna anna anna anna anna anna anna anna
Imported program of interest to go to program description page. Imported program of interest to go to program description page. Imported program of interest to go to program description page. Imported program of interest to go to program description page. Imported program of interest to go to program description page. Imported program of interest to go to program description page. Imported program of interest to go to program description page. Imported program of interest to go to program description page. Imported program of interest to go to program description page. Imported program of interest to go to program description page. Imported program of interest to go to program description page. Imported program of interest to go to program description page. Imported program of interest to program description page. Impor	Supported Programs		_				0	Viruses	MetaCyc			1 1 0 0		735	349		and the second s
All and the problem All and the problem					Genomes & Micro Retweeted	biomes	5		🖄 InterPr	o Brows	And a second sec	metagenom	e and met	atranscriptome table st	tatistics.		
Single-Stranded Positive-Sense RNA Double-Stranded RNA Double-Stranded RNA Double-Stranded RNA Double-Stranded DNA Model Prize in Chemistry, Nas Bioremediation 187 206 Alta Host-associated JGI ALL Host-associated JGI </td <td>AMD .</td> <td>HAID Systems bloogy</td> <td></td> <td></td> <td>JOIN</td> <td>iome Inst. C</td> <td></td> <td>Metagenome Met</td> <td>atranscripto</td> <td>me</td> <td></td> <td>-4</td> <td></td> <td></td> <td></td> <td>1</td> <td>_</td>	AMD .	HAID Systems bloogy			JOIN	iome Inst. C		Metagenome Met	atranscripto	me		-4				1	_
Single-Stranded Positive-Sense RNA Single-Stranded Negative-Sense RNA Double-Stranded RNA Double-Stranded DNA #NobelPrize in Chemistry, has been working with @iai Microbiome	And a subscription of the	e to to view all families and species in list format. Don't l	now family of species? Pro	ovide species name	@ucberkeley @b	erkeleylab		Engineered			Environmental			Host-associated	10000	and the second se	
	Single-Stranded Positive-Sense RNA	Single-Stranded Negative-Sense RNA	Double-Stranded RNA	Double-Stranded DNA	#NobelPrize in Ch	nemistry, has	- I.	Bioremediation	187	206	Aquatic	<u>11575</u>	<u>13709</u>	Annelida	138	<u>149</u>	

IMG/M UNIT

JGI 🐰

Tools and databases are often integrated

Human Microbiome

(Part)

Comprehensive Antibiotic Resistance Database (CARD)

Database to identify antibiotic resistance genes and related information <u>https://card.mcmaster.ca/analyze/rgi</u>

- Accepts DNA or protein sequences
- Performs gene prediction and annotation using third party tools
- Uses curated sequences and detection models to annotate sample resistome

CARD Output

 Interactive sunburst visualizations and tables of predicted resistance genes, gene family, drug class, etc

RGI A Criteria	ARO ≑ Term	\$NP [≜]	Detection	AMR Gene Family	Drug ∳ Class	Resistance	% Identity of Matching ≑ Region	% Length of Reference Sequence
Perfect	OXA-1		protein homolog model	OXA beta-lactamase	cephalosporin, penam	antibiotic inactivation	100.0	105.43
Perfect	AAC(6')-Ib- cr		protein homolog model	AAC(6')	fluoroquinolone antibiotic, aminoglycoside antibiotic	antibiotic inactivation	100.0	100.00
Perfect	NDM-1		protein homolog model	NDM beta-lactamase	carbapenem, cephalosporin, cephamycin, penam	antibiotic inactivation	100.0	100.00

CARD Result in tabular format

https://card.mcmaster.ca/home

Virulence Factor Database (VFDB)

- Database providing classification of virulence factors present in bacterial pathogens
- http://www.mgc.ac.cn/VFs/main.htm
- Accepts protein or DNA sequence and identifies presence of known virulence factors using sequence similarity
- VFanalyzer for detecting virulence factors in draft or complete genomes

Raw Sequence Data Type

FastQ format

@ Unique identifier @ SEQ_ID Raw sequence Optional text Quality score
!''*(((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>CCCCCC65

- PHRED quality score encodes the probability of an erroneous call $Q = -10 \log_{10} P$
- Quality score of 30 for a base indicates that the chances of calling this base incorrectly are 1 in 1000
- Encoded in ASCII characters

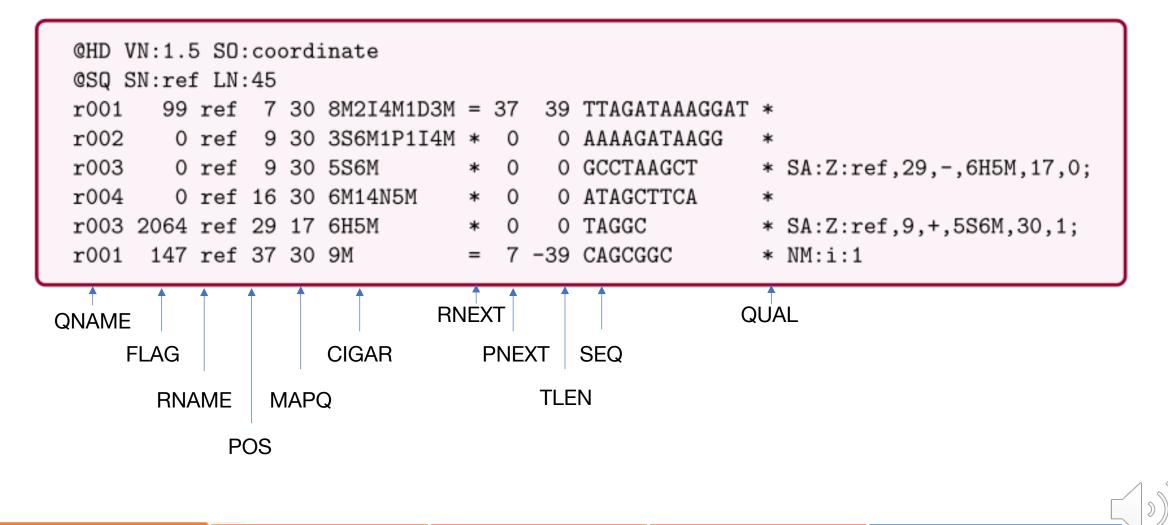
FASTA Format

- Fasta files normally have extension .fasta, .fas, .fa, .fna, .faa, frn
- Used for nucleotide as well as amino acid sequences

> Header Sequence >MCHU - Calmodulin - Human, rabbit, bovine, rat, and chicken ADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAELQDMINEVDADGNGTID FPEFLTMMARKMKDTDSEEEIREAFRVFDKDGNGYISAAELRHVMTNLGEKLTDEEVDEMIREA DIDGDGOVNYEEFVOMMTAK*

https://en.wikipedia.org/wiki/FASTA

Sequence Alignment/Map format


SAM format

- Widely accepted format for storing read alignments against a reference sequence
- Stores read mate pair information
- Reads can be classed by library, sequencer lane
- Binary version of SAM is BAM

Column	Field	Description	
1	QNAME	Query Name	
2	FLAG	Bit wise flag (Mapped, pairing info)	
3	RNAME	Reference name	
4	POS	1-based leftmost alignment start, clipped	
5	MAPQ	PHRED scaled mapping quality	
6	CIGAR	Alignment representation	
7	RNEXT	Mate reference information	
8	PNEXT	Position of mate	
9	TLEN	Observed template length	
10	SEQ	Sequence	
11	QUAL	PHRED scaled base quality	

File Formats

SAM Format Example

SAM Flags

Bitwise FLAGs

#	Decimal	Description of read
1	1	Read paired
2	2	Read mapped in proper pair
3	4	Read unmapped
4	8	Mate unmapped
5	16	Read reverse strand
6	32	Mate reverse strand
7	64	First in pair
8	128	Second in pair
9	256	Not primary alignment
10	512	Read fails platform/vendor quality checks
11	1024	Read is PCR or optical duplicate
12	2048	Supplementary alignment
Sum	0	

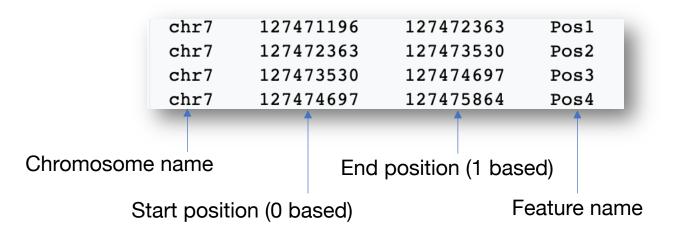
https://www.samformat.info/sam-format-flag

Web based tool for decoding SAM FLAG

Decoding SAM flags	
This utility makes it easy to identify what are the properties of a read based be for a given combination of properties.	I on its SAM flag value, or conversely, to find what the SAM Flag value
To decode a given SAM flag value, just enter the number in the field below.	The encoded properties will be listed under Summary below, to the r
SAM Flag: 99 Explain	
Switch to mate Toggle first in pair / second in pair	
-	Cardina (
Find SAM flag by property: To find out what the SAM flag value would be for a given combination of properties, tick the boxes	Summary: read paired (0x1)
for those that you'd like to include. The flag value will be shown in the SAM Flag field above.	read mapped in proper pair (0x2)
	mate reverse strand (0x20)
read paired	first in pair (0x40)
 read mapped in proper pair read unmapped 	
mate unmapped	
read reverse strand	
✓ mate reverse strand	
M mate reverse strand	
🗹 first in pair	
 first in pair second in pair 	
 first in pair second in pair not primary alignment 	
 first in pair second in pair 	

Human Microbiome	NGS application	Workflow	Databases	File Formats
------------------	-----------------	----------	-----------	--------------

Variant Calling Format


- Used for storing gene sequence variation information
- Contains header section and 8 mandatory columns and unlimited optional columns

Header	<pre>##phasing=parti ##INF0=<id=ns,n ##filter="<ID=s5" ##format="<ID=GT</pre" ##inf0="<ID=H2,N"></id=ns,n></pre>	0805 tationProgr e:///seq/re ,length=624 al umber=1,Typ umber=1,Typ umber=1,Typ umber=0,Typ 0,Descripti 0,Descripti ,Number=1,T ,Number=1,T	eference 135964, a be=Integ be=Float be=Float be=Flag be=Flag lon="Qua lon="Les 'ype=Stn 'ype=Integ	ger, Desc ger, Desc t, Descri , Descri , Descri , Descri ality b ss than ring, Des teger, De	y=B36, cripti cription ription ption= elow 1 50% o script escrip	md5=f126 on="Numb on="Tota ="Allele "dbSNP m "HapMap2 0"> f sample ion="Ger tion="Ge	Scdf8a6e0c7f379d618ff66beb2da,specie per of Samples With Data"> al Depth"> a Frequency"> stral Allele"> membership, build 129"> 2 membership; build 129"> 2 membership; membership; as have data"> motype"> motype Quality">	es="Homo sapi	ens",taxonomy=x>	
	1.1		+ -	-		and such in the second	plotype Quality">	- Simon		101111
8 columns —	#CHROM POS NA00003	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT	NA00001	NA00002
	20 14370 1/1:43:5:.,.	rs6054257	G	A	29	PASS	NS=3;DP=14;AF=0.5;DB;H2	GT:GQ:DP:HQ	0 0:48:1:51,51	1 0:48:8:51,51
	20 17330 0/0:41:3		T	A	3	q10	NS=3;DP=11;AF=0.017	GT:GQ:DP:HQ	0 0:49:3:58,50	0 1:3:5:65,3
	20 1110696 2/2:35:4	rs6040355	A	G,T	67	PASS	NS=2;DP=10;AF=0.333,0.667;AA=T;DB	GT:GQ:DP:HQ	1 2:21:6:23,27	2 1:2:0:18,2
	20 1230237 0/0:61:2		т	÷	47	PASS	NS=3;DP=13;AA=T	GT:GQ:DP:HQ	0 0:54:7:56,60	0 0:48:4:51,51
	20 1234567 1/1:40:3	microsat1	GTC	G,GTCT	50	PASS	NS=3;DP=9;AA=G	GT:GQ:DP	0/1:35:4	0/2:17:2

BED File Format

Browser Extensible Data

- Used to store annotations on genomic regions
- Requires a minimum of three columns
- File extension is .bed

Format Conversion Tools

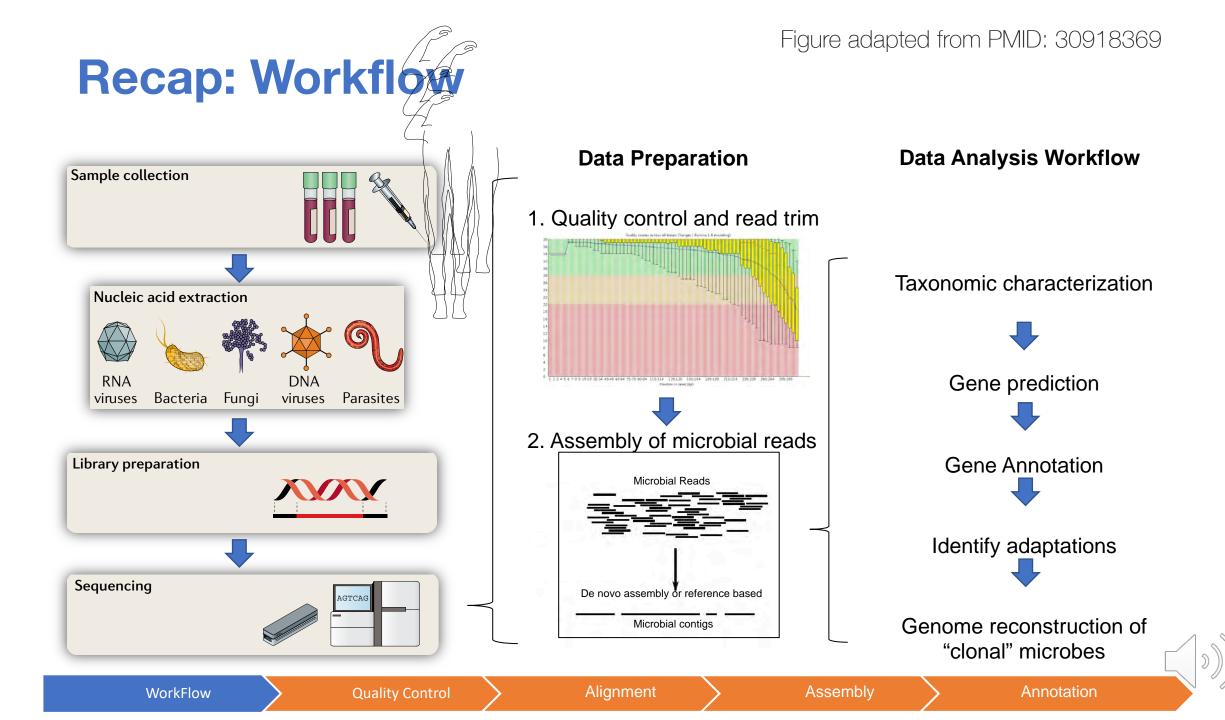
- Analysis tools need input in different formats
- EMBOSS seqret is web-based tool for file format conversion https://www.ebi.ac.uk/Tools/sfc/emboss_seqret/

FASTQ FASTA

• EMBOSS provides comprehensive set of web-based tools and databases for performing complex analysis https://www.ebi.ac.uk/services

- 1. Human Microbiome
- 2. Next Generation Sequencing (NGS) principle and applications
- 3. Workflow for a typical metagenomics project
- 4. Bioinformatics databases, MGI, CARD, VFDB
- 5. Bioinformatics data types, FASTQ, SAM, BED

Thank You

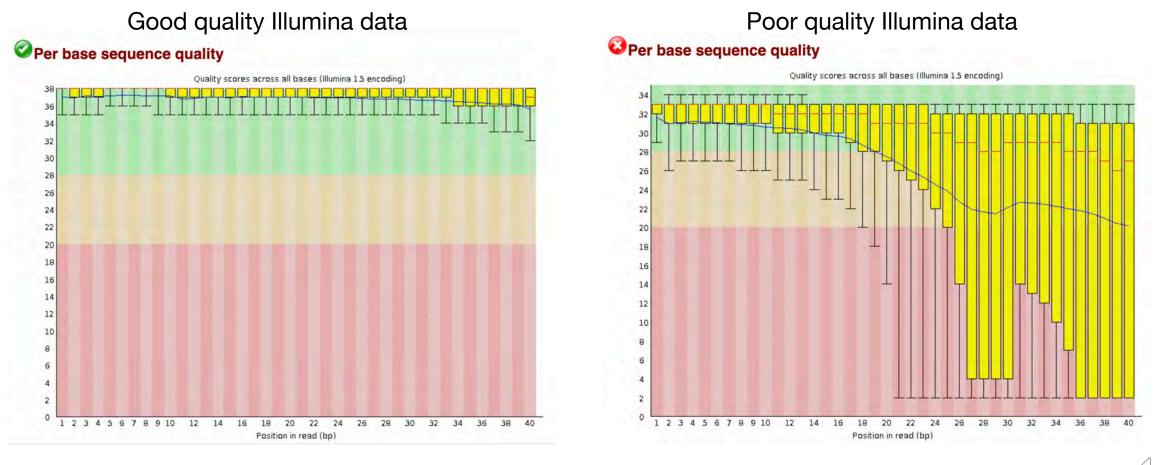

Analyzing Microbial Communities Using Next Generation Sequencing

PART II: Workflow, Tools and Application

Rounak Feigelman, Ph.D. Senior Scientist, Paragon Genomics Inc.

10/27/20

Data Quality Assessment

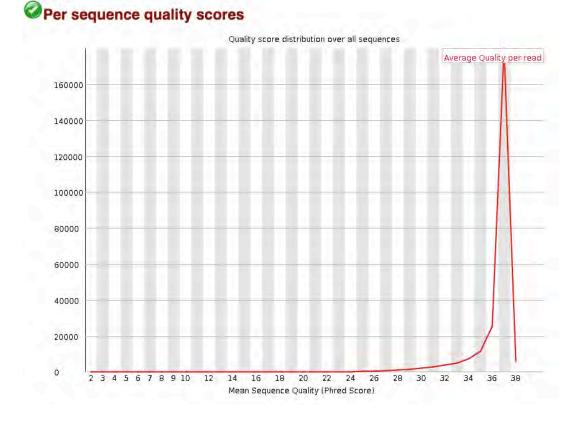

FASTQC

- Open source tool designed to identify issues with sequencing data
- Accepts raw sequencing data in FASTQ format
- Runs multiple analysis and reports pass/warning/fail
- Graphical output

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Images: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

FASTQC Output



Phred scores drop towards the end of reads

WorkFlow	Quality Control	Alignment	Assembly	Annotation						

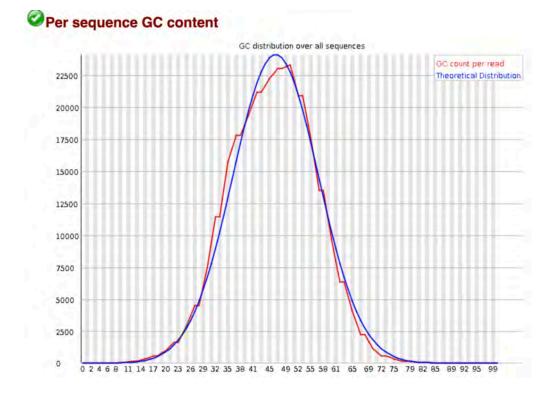
FASTQC Output

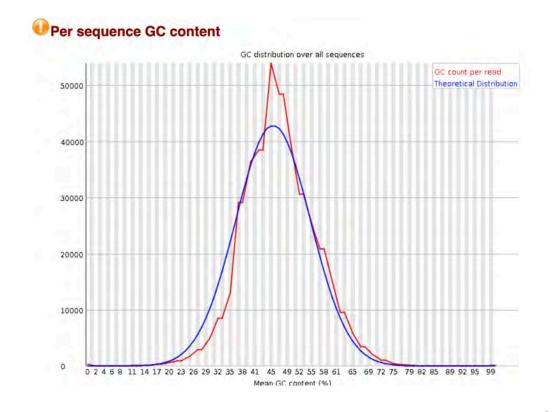
Good quality Illumina data

Poor quality Illumina data

WorkFlow

FASTQC Output

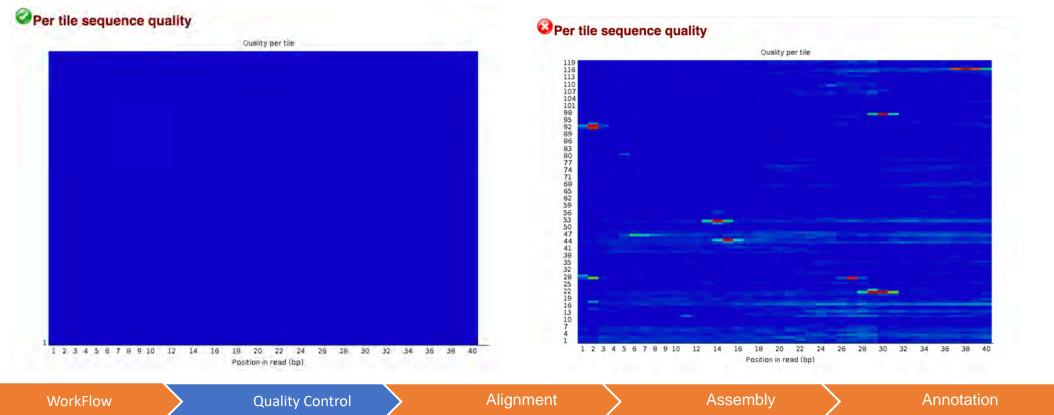



U Per base sequence content

Per base sequence content helps identify bias in sequence composition

Alignment Assembly WorkFlow **Quality Control** Annotation

FASTQC Output



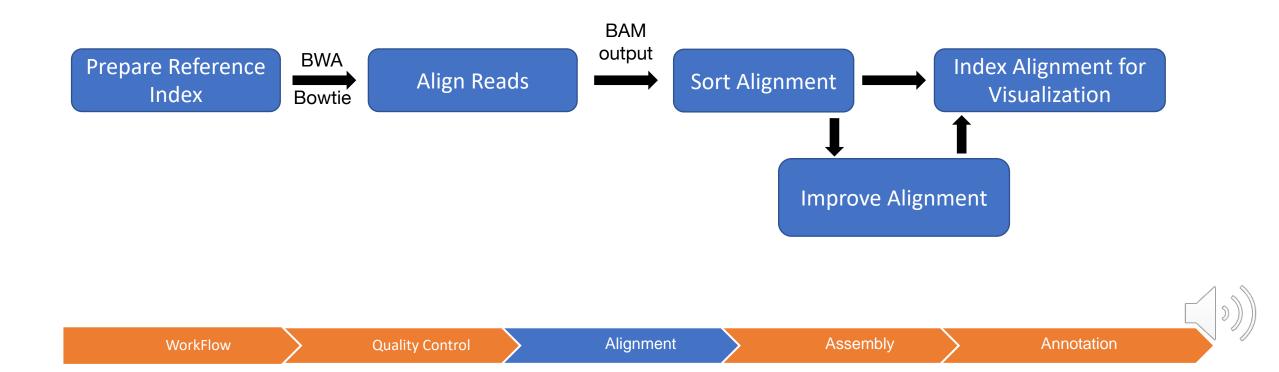
WorkFlow

') //

FASTQC Output : Illumina Specific

- Deviation from average quality score at each flowcell tile
- Red indicates lower than average
- Tiles showing consistently poor quality indicate issue with the flowcell lane such as debris

FASTQC Report


Additional reporting includes

- Ambiguous nucleotide content per base
- Sequence duplication levels
- Overrepresented sequences
- Adapter content

Alignment Workflow

Datatype	Application	Use Case
Amplicon based sequencing	Map reads to reference of intended target	Microbe detection and variant analysis
Untargeted WGS sequencing	Map reads to host genome	Filter out reads of non-microbial origin

Alignment Improvement

https://broadinstitute.github.io/picard/

GATK and **Picard** tools are most widely used for improving alignments

- 1. Realignment around insertion/deletion
- 2. Base quality recalibration
- 3. Library duplicate removal
 - When multiple PCR products from same template molecule bind to the flowcell, PCR duplicates are sequenced
 - Duplicates can result in false variant calls

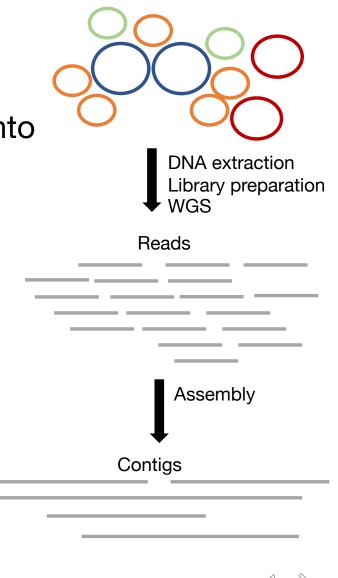
Alignment Tools

- 1. Burrows-Wheeler Alignment Tool
 - Performs local alignment
 - Used for mapping against a large reference
 - Seeds alignment and extends to in both directions
 - <u>http://bio-bwa.sourceforge.net/bwa.shtml</u>
- 2. Bowtie2
 - <u>http://bowtie-bio.sourceforge.net/bowtie2/index.shtml</u>

Samtools is used to post process SAM and BAM formats, http://htslib.org

Alignment Visualization Tool

Integrative Genomics Viewer : <u>http://www.broadinstitute.org/igv/download</u>



WorkFlow

Assembly

 Overlapping reads from a genomic region are combined into contiguous sequence, known as contigs

- Two approaches: Reference based or De novo assembly
- Metagenomic assemblers perform de novo assembly
- Available tools
 - metaSPAdes https://cab.spbu.ru/software/spades/
 - MetaVelvet https://www.ebi.ac.uk/~zerbino/velvet/

Annotation

Mixed Community Genomes

Metagenomic vs Isolate Assembly

Metagenomic Assembly

a) Bacterial species are mixtures of strains in a mixed community sample

- b) Abundance of each species is variable resulting in uneven coverage of each genome
- c) Metagenome assembled genomes (MAGs) are composite representative genomes of multiple strains

Isolate Assembly

- a) Sample is clonal in nature, little to no diversity is expected
- b) Coverage is assumed to to uniform across genome
- c) Isolate genomes are more accurate representatives of the strain

Assembly Metrics

- L50 #1 #2 #3 #4 #5 10 9 8 6 D50 N50 N90 48.6 = 90% 27 = 50%27 = 50% 54 = 100%
- 50% of the assembly is in contigs of equal or longer length

- L**50**

WorkFlow

- N50

Smallest number of fragments that contain 50% of the assembly

Alignment

- Min, Max and Mean contig length, number of contigs

Quality Control

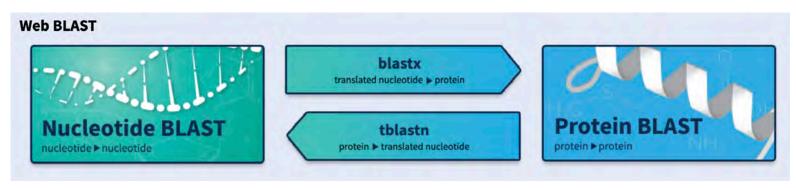
Image : https://en.wikipedia.org/wiki/N50, L50, and related statistics

Annotation

Assembly

Functional Annotation

- Gene prediction is performed on assembled sequences "contigs"
- Open reading frames are identified
- PRODIGAL Gene Prediction Software https://github.com/hyattpd/Prodigal
 - Predicts prokaryotic protein coding genes using unsupervised machine learning algorithm
 - Suitable for finished, draft genome or metagenomes
 - Able to detect partial open reading frames that run over contig edges



Functional Annotation

- Prodigal identifies protein coding genes but does not annotate its product
- **Prokka** performs annotation by comparing the predicted gene with high quality protein database of known function and transfer the annotation
- Along with high quality protein sequence databases it uses domain specific databases and models of protein families for annotation

https://github.com/tseemann/prokka

BLAST

Basic local alignment search tool

- BWA and Bowtie work best with lowly divergent sequences
- BLAST is optimized for identifying homology (shared ancestry)
- Used for annotating DNA as well as protein sequences
- Web based and standalone version available https://blast.ncbi.nlm.nih.gov/Blast.cg

BLAST Search

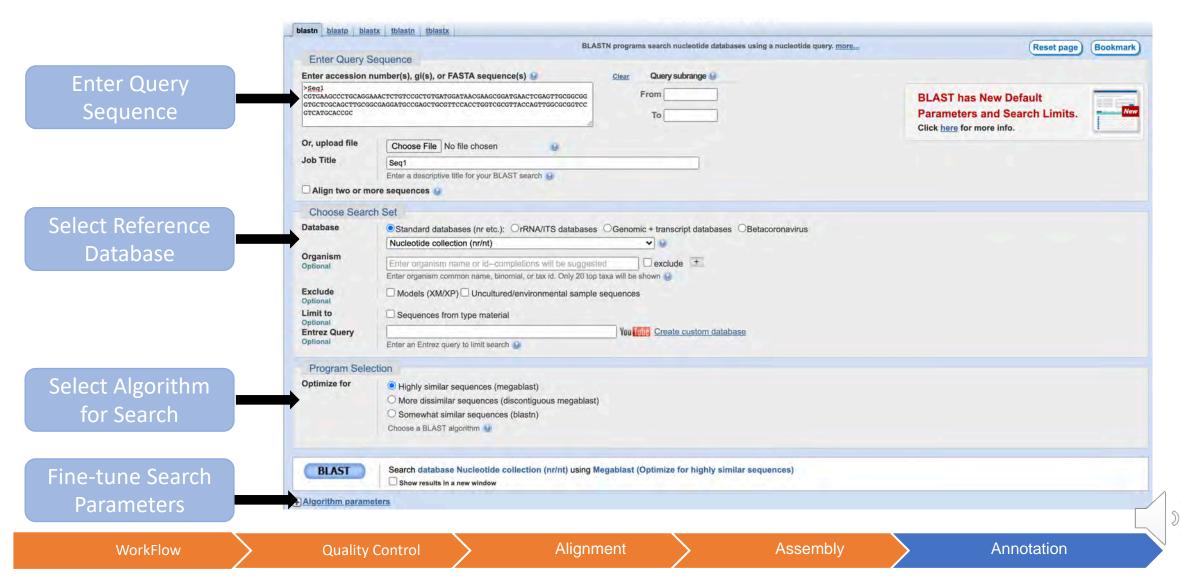
WorkFlow

What is the goal of search? - Identify appropriate database for search

- Identify potential homologs in a particular species species specific database
- Determine whether these sequences are found in any species Genbank, RefSeq
- Determine whether sequences contains any coding functional domains Pfam

Tool	Query Type	Database Type
BLASTn	DNA	DNA
BLASTp	Protein	Protein
blastx	DNA	Protein
tblastn	Protein	DNA
tblastx	DNA	DNA

Quality Control


Alignment

Assembly

Annotation

BLAST Example

Identify sequence recovered from sputum of a Cystic Fibrosis patient

BLAST Example

rganism only
Type common
Add organis
ercent Identit
to

Alignments

Graphic Summary

Type common name	e, binomial, taxid or grou	up name				
+ Add organism		1				
Percent Identity	E value	Query Coverage				
to	to	to				

E value

- Number of hits expected to see by chance when searching the database
- Dependent on database size
- Small e values values indicate high confidence in match

Seq	uences producing significant alignments	Download 🐣	Manage columns Show 100 V					
	select all 100 sequences selected		GenBank Graphics			ics [Distance tree of results	
	Description		Max Score	Total Score	Query Cover	E value	Per. Ident	Accession
~	Pseudomonas aeruginosa strain PA0750 chromosome, complete genome		278	278	100%	7e-71	100.00%	CP034908.2
~	Pseudomonas aeruginosa strain DVT410 chromosome, complete genome		278	278	100%	7e-71	100.00%	CP050334.1
~	Pseudomonas aeruginosa strain DVT414 chromosome, complete genome		278	278	100%	7e-71	100.00%	CP050331.1
~	Pseudomonas aeruginosa strain DVT779 chromosome, complete genome		278	278	100%	7e-71	100.00%	CP050330.1
~	Pseudomonas aeruginosa strain DVT417 chromosome, complete genome		278	278	100%	7e-71	100.00%	CP050329.1
~	Pseudomonas aeruginosa strain DVT421 chromosome, complete genome		278	278	100%	7e-71	100.00%	CP050327.1
~	Pseudomonas aeruginosa strain DVT423 chromosome, complete genome		278	278	100%	7e-71	100.00%	CP050326.1

A A	-		ow	
WV	or	K E I	OW	
	<u> </u>	· · · ·	~	

Descriptions

Taxonomy

Summary

- Quality Control, FASTQC
- Alignment workflow and tools
- Assembly principles and metrics
- Annotation tools and examples, BLAST

Thank You

