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• Background 
• Data processing

– Preprocessing and data characteristics
– Normalization
– Batch effect correction
– Imputation

• Data analyses
– Cell clustering
– Pseudo-time construction
– Cell type identification
– Differential expression

• Data visualization
– TSNE and UMAP
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Background
• Most of the biological experiments are performed on 

“bulk” samples, which contains a large number of 
cells (millions).

• The “bulk” data measure the average signals (gene 
expression, TF binding, methylation, etc.) of many 
cells.

• The bulk measurement ignores the inter-cellular 
heterogeneities: 
– Different cell types.
– Variation among the same cell type. 



Single cell biology
• The study of individual cells.
• The cells are isolated from multi-cellular organism. 
• Experiment is performed for each cell individually. 
• Provides more detailed, higher resolution 

information.
• High-throughput experiments on single cell is 

possible.



Single cell sequencing

• Different types of sequencing at the single-cell level:
– DNA-seq
– ATAC-seq, ChIP-seq
– BS-seq
– RNA-seq

• Very active research field in the past few years. 



Basic experimental procedure
• Isolation of single cell. Techniques include
– Laser-capture microdissection (LCM)

– Fluorescence-activated cell sorting (FACS)

– Microfluidics

• Open the cell and obtain DNA/mRNA/etc.

• PCR amplification to get enough materials.

• Perform sequencing.

• Note that single cell sequencing usually has higher 
error rates than bulk data. 



Single cell RNA-seq (scRNA-seq)

• The most active in the single cell field. 
• Scientific goals:
– Composition of different cell types in complex tissues. 
– New/rare cell type discovery.
– Gene expression, alternative splicing, allele specific 

expression at the level of individual cells.
– Transcriptional dynamics (pseudotime construction).  
– Above can be investigated and compared spatially, 

temporally, or under different biological condition. 



scRNA-seq technologies
• Full-length sequencing, such as Smart-Seq/Smart-

Seq2
– High sequencing depth
– Better at detecting low expression genes
– Good for isoform analysis, allele specific expression

• 3’ end sequencing: such as droplet-based (Drop-seq, 
inDrop, 10x genomics)
– Many cells, low sequencing depth per cell
– Good for identifying cell subpopulations



Universal molecular identifier (UMI)
• Short sequence tag added to the mRNA molecular before PCR, 

for reducing PCR bias. 

…



Data processing

• Preprocessing
• Data characteristics
• Normalization 
• Batch effect correction
• Imputation



scRNA-seq data preprocessing

• Sequence alignment and expression 
quantification
– RNA-seq alignment software (Tophat, STAR, HISAT, 

etc.) can be used 
– Some commercial software, such as Cell Ranger 

for 10x genomics data. 



Some data characteristics
• Data is very sparse (many zeros), especially for Drop-seq data. 
• Number of transcripts detected is much lower compared to 

bulk RNA-seq under the same sequencing depth.
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variation. This was not seen in the other single-cell methods and 
is perhaps attributable to the sequencing depth of these samples. 
In general, the microfluidic single-cell data had a more well-
defined relationship, with less scatter, between expression level 
and variation than the single cells measured in tubes.

Nanoliter sample preparation improves RNA-seq sensitivity
We constructed saturation curves for each preparation method by 
subsampling the raw reads from each library and determining the 
number of genes detected (Fig. 5). The number of genes detected 
with confidence (FPKM > 1) approached saturation at roughly  
2 million reads for all methods; in fact, the majority of genes were 
detected within the first 500,000 reads—and for most methods, 
>90% of all genes detected at 30 million reads were already detected 
at a sequencing depth of 2 million (Supplementary Fig. 7a).  
There was a large difference in the sensitivity of each method, 
with a wide range of saturation points. The synthetic ensemble 
experiment matched the bulk experiment generated with the 
same method (SMARTer): both reached saturation at 2 million 
sequenced reads at almost identical rates. This again suggests that 
there is less bias when performing cDNA synthesis in smaller 
reaction volumes. With less bias, low-abundance transcripts have 
better representation at lower sequencing depths, and the overall 
assay sensitivity thus improves. Further confirming this hypoth-
esis is the observation that for individual transcriptomes gener-
ated using the microfluidic platform, the average number of genes 
detected at any sequencing depth is higher than with any other 
single-cell method (Fig. 5 and Supplementary Figs. 1 and 7).

DISCUSSION
We used microfluidic automation to quantitatively compare the 
accuracy and precision of single-cell RNA-seq to qPCR. Using two 
distinct methods, each of which has different biases and sources 
of error, enabled us to estimate the absolute accuracy of single-
cell gene expression. Our study shows that single-cell RNA-seq 
can generate results that are quantitatively comparable to qPCR, 
in particular when sample preparation is done in nanoliter-scale 
reaction volumes, as in a microfluidic device. Bias that is typically 
introduced during sample preparation is reduced, and correlation 
further improves. It is not yet clear whether this bias is a funda-
mental limitation of microliter-volume amplification schemes or 
whether with further optimization, these approaches will also 
be able to yield fully accurate transcriptome measurements.  

We expect that the availability of low-bias, high-throughput  
single-cell RNA-seq will make studies of primary tissue involving  
diverse subsets of cell types and hundreds or thousands of  
individual cells routine.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. Gene Expression Omnibus: GSE51254. All  
analysis was performed using custom R scripts, available for 
download at http://sourceforge.net/projects/arwu-scrnaseq/files/
C1_hiseq_analysis_for_paper_revision.R/download.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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• Bulk and aggregated single cell expressions 
have good correlation. 
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Combining single-cell data recapitulates bulk RNA profile
We created a synthetic ensemble data set by computationally 
pooling raw reads from all the single-cell RNA-seq data to mimic 
a bulk RNA-seq experiment. The correlation between the true 
bulk gene expression and the single-cell ensemble was remarkably 
high (Fig. 4a); there was little distortion as demonstrated by the 
Loess regression curve being virtually linear with a slope close 
to 1 in this regime, and the Pearson correlation coefficient was 
0.870. This analysis confirmed that an ensemble of single cells 
indeed recapitulates the bulk11. However, it is worth noting that 
the opposite is generally not true: bulk measurements cannot be 
used to accurately infer ‘typical’ single-cell expression values, nor 
can they be used to infer the variation in expression value from  
cell to cell (T.K., P.D., S.S., M.F.C. and S.R.Q., unpublished data).

Next we examined variation among RNA-seq replicates by 
looking at how dispersion about the median FPKM depends on 
median gene expression for each method (Fig. 4b). In general, 
genes with low expression levels exhibited greater variation, and 
the degree of variability was gene dependent. But as expression 
level increased, the amount of variation decreased, presum-
ably because genes with high expression are also those that are 
expressed stably. Low-expression genes that were reliably detected 
with low variation among replicates were only found in bulk RNA-
seq and synthetic ensemble data sets. Interestingly, despite the 

uniform behavior of ERCC spike-ins (Supplementary Fig. 6b), 
inter-replicate variation among individual C1 single-cell data 
sets appeared to monotonically decrease with gene expression 
level; that is, low-expression genes always had a high intersample  
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• Expression levels for a gene in different cells 
sometimes show bimodal distribution. 
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Combining single-cell data recapitulates bulk RNA profile
We created a synthetic ensemble data set by computationally 
pooling raw reads from all the single-cell RNA-seq data to mimic 
a bulk RNA-seq experiment. The correlation between the true 
bulk gene expression and the single-cell ensemble was remarkably 
high (Fig. 4a); there was little distortion as demonstrated by the 
Loess regression curve being virtually linear with a slope close 
to 1 in this regime, and the Pearson correlation coefficient was 
0.870. This analysis confirmed that an ensemble of single cells 
indeed recapitulates the bulk11. However, it is worth noting that 
the opposite is generally not true: bulk measurements cannot be 
used to accurately infer ‘typical’ single-cell expression values, nor 
can they be used to infer the variation in expression value from  
cell to cell (T.K., P.D., S.S., M.F.C. and S.R.Q., unpublished data).

Next we examined variation among RNA-seq replicates by 
looking at how dispersion about the median FPKM depends on 
median gene expression for each method (Fig. 4b). In general, 
genes with low expression levels exhibited greater variation, and 
the degree of variability was gene dependent. But as expression 
level increased, the amount of variation decreased, presum-
ably because genes with high expression are also those that are 
expressed stably. Low-expression genes that were reliably detected 
with low variation among replicates were only found in bulk RNA-
seq and synthetic ensemble data sets. Interestingly, despite the 

uniform behavior of ERCC spike-ins (Supplementary Fig. 6b), 
inter-replicate variation among individual C1 single-cell data 
sets appeared to monotonically decrease with gene expression 
level; that is, low-expression genes always had a high intersample  
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Data normalization
• scRNA-seq is very noisy. 
• Spike-in data is usually available. 
– Spike-ins from the external RNA Control Consortium 

(ERCC) panel contains 92 synthetic spikes based on 
bacterial genome with known expression level. 

• UMI is helpful for removing amplification noise. 
• A combination of spike-in and UMI can potentially be 

used for data normalization.
• Simple normalization (such as by sequencing depth) 

for bulk RNA-seq can be applied, e.g., TPM or FPKM. 



• Log-transform FPKM values, denoted by x.
• Assume the expression value, y, follow Gamma distribution. 

The mean of Gamma is a polynomial function of x: ! = #(%).

• Use MLE to estimate parameters based on ERCC data. Then 
the fitted model is applied to all genes to estimate 
concentration. 
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ABSTRACT 
A major roadblock towards accurate interpretation of single cell RNA-seq 
data is large technical noise resulted from small amount of input materials. 
The existing methods mainly aim to find differentially expressed genes 
rather than directly de-noise the single cell data. We present here a 
powerful but simple method to remove technical noise and explicitly 
compute the true gene expression levels based on spike-in ERCC 
molecules. 
Availability and implementation: The software is implemented by R and 
the download version is available at http://wanglab.ucsd.edu/star/GRM. 
Supplementary information: Supplementary data are available at 
Bioinformatics online. 

1 INTRODUCTION  
Single-cell RNA-seq is a promising technology with broad applications and 
discerning biological noise from technical noise is critical for correctly 
interpreting the data (Jaitin, et al., 2014). Recently, statistical methods are 
developed to model the technical noise from spike-in ERCC molecules, 
whose concentrations are presumably same across the samples, and then 
identify differentially expressed genes, whose variations across samples are 
significantly larger than technical noise(Brennecke, et al., 2013). A limit 
for such an approach is that the true gene expression level is not explicitly 
calculated, which is needed for many analyses based on quantification of 
transcriptions.  
Here we propose a novel strategy to normalize and de-noise single cell 
RNA-seq data. This method calculates RNA concentrations from the 
sequencing reads, which is opposite to the other published methods that 
model sequencing reads from RNA concentrations; it is much simpler than 
the existing methods but importantly it allows to remove technical noise 
and explicitly compute gene expression. Specifically, we fit a gamma 
regression model (GRM) between the sequencing reads (RPKM, FPKM or 
TPM) and the concentration of spike-in ERCC molecules. The trained 
model is then used to estimate the de-noised molecular concentration of the 
genes from the reads. GRM shows great power of reducing technical noise 
and superior performance compared to several popular normalization 
methods such as FPKM(Tu, et al., 2012), TMM(Robinson and Oshlack, 
2010) and FQ(Bullard, et al., 2010) in analyzing single cell RNA-seq data. 

 

2 RESULTS 

                                                           
*Correspondence: wei-wang@ucsd.edu  

2.1 Fit a gamma regression model from read counts to 
RNA concentrations 

Spike-in ERCCs can be added equally to each sample during the 
library preparation to calibrate measurements of single cell 
RNA-seq. A natural approach is to train a model to compute read 
counts such as FPKM from the concentrations of ERCC 
(FPKM=concentration). This model is then used to 
calculate the expression level or molecular concentration of each 
gene from its FPKM using the reversed relationship 
(concentration=FPKM). However, substantial 
technical noise in single cell RNA-seq makes it non-trivial to 
construct such a model(Grun, et al., 2014). In addition, it can be 
challenging to analytically or numerically solve the reverse model. 
We therefore propose to fit the “reverse” model directly 
(concentration=FPKM) using ERCCs. This way, gene 
expression levels can be directly computed from FPKM. Such a 
strategy is novel and much simpler than the published methods that 
model noise distribution without explicitly computing the 
de-noised gene expression levels.  
We choose to use gamma distribution to model the distribution of 
molecular concentrations because of its flexibility to fit diverse 
shapes. As the values of molecular concentration (10-2-104) and 
FPKM (always 0-104~5) vary in a large range, we first perform log 
transformation of these data,   FPKM (log-R) and 
  	concentration) (log-C). Instead of fitting a gamma 
regression model between  and  directly, we model the 
non-linearity of single cell signals using a polynomial function 
  ∑ 

 . The model is the following: 
~; , 	 

with the probability density function: 

The parameters are determined using maximum likelihood 
estimation (MLE). The optimal value of n is determined by an 
empirical search: we train multiple models with n=1 to n=4 and 
select n with smallest average technical noise of ERCCs. 
Using the regression model trained from spike-in ERCCs in one 
single cell sample, we compute the true expression levels of genes 

© The Author (2015). Published by Oxford University Press. All rights reserved. For Permissions, please email: 
journals.permissions@oup.com
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interpreting the data (Jaitin, et al., 2014). Recently, statistical methods are 
developed to model the technical noise from spike-in ERCC molecules, 
whose concentrations are presumably same across the samples, and then 
identify differentially expressed genes, whose variations across samples are 
significantly larger than technical noise(Brennecke, et al., 2013). A limit 
for such an approach is that the true gene expression level is not explicitly 
calculated, which is needed for many analyses based on quantification of 
transcriptions.  
Here we propose a novel strategy to normalize and de-noise single cell 
RNA-seq data. This method calculates RNA concentrations from the 
sequencing reads, which is opposite to the other published methods that 
model sequencing reads from RNA concentrations; it is much simpler than 
the existing methods but importantly it allows to remove technical noise 
and explicitly compute gene expression. Specifically, we fit a gamma 
regression model (GRM) between the sequencing reads (RPKM, FPKM or 
TPM) and the concentration of spike-in ERCC molecules. The trained 
model is then used to estimate the de-noised molecular concentration of the 
genes from the reads. GRM shows great power of reducing technical noise 
and superior performance compared to several popular normalization 
methods such as FPKM(Tu, et al., 2012), TMM(Robinson and Oshlack, 
2010) and FQ(Bullard, et al., 2010) in analyzing single cell RNA-seq data. 

 

2 RESULTS 

                                                           
*Correspondence: wei-wang@ucsd.edu  

2.1 Fit a gamma regression model from read counts to 
RNA concentrations 

Spike-in ERCCs can be added equally to each sample during the 
library preparation to calibrate measurements of single cell 
RNA-seq. A natural approach is to train a model to compute read 
counts such as FPKM from the concentrations of ERCC 
(FPKM=concentration). This model is then used to 
calculate the expression level or molecular concentration of each 
gene from its FPKM using the reversed relationship 
(concentration=FPKM). However, substantial 
technical noise in single cell RNA-seq makes it non-trivial to 
construct such a model(Grun, et al., 2014). In addition, it can be 
challenging to analytically or numerically solve the reverse model. 
We therefore propose to fit the “reverse” model directly 
(concentration=FPKM) using ERCCs. This way, gene 
expression levels can be directly computed from FPKM. Such a 
strategy is novel and much simpler than the published methods that 
model noise distribution without explicitly computing the 
de-noised gene expression levels.  
We choose to use gamma distribution to model the distribution of 
molecular concentrations because of its flexibility to fit diverse 
shapes. As the values of molecular concentration (10-2-104) and 
FPKM (always 0-104~5) vary in a large range, we first perform log 
transformation of these data,   FPKM (log-R) and 
  	concentration) (log-C). Instead of fitting a gamma 
regression model between  and  directly, we model the 
non-linearity of single cell signals using a polynomial function 
  ∑ 

 . The model is the following: 
~; , 	 

with the probability density function: 

The parameters are determined using maximum likelihood 
estimation (MLE). The optimal value of n is determined by an 
empirical search: we train multiple models with n=1 to n=4 and 
select n with smallest average technical noise of ERCCs. 
Using the regression model trained from spike-in ERCCs in one 
single cell sample, we compute the true expression levels of genes 
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Pooling across cells to normalize
single-cell RNA sequencing data with many
zero counts
Aaron T. L. Lun1*, Karsten Bach2 and John C. Marioni1,2,3*

Abstract
Normalization of single-cell RNA sequencing data is necessary to eliminate cell-specific biases prior to downstream
analyses. However, this is not straightforward for noisy single-cell data where many counts are zero. We present a
novel approach where expression values are summed across pools of cells, and the summed values are used for
normalization. Pool-based size factors are then deconvolved to yield cell-based factors. Our deconvolution approach
outperforms existing methods for accurate normalization of cell-specific biases in simulated data. Similar behavior is
observed in real data, where deconvolution improves the relevance of results of downstream analyses.

Keywords: Single-cell RNA-seq, Normalization, Differential expression

Background
Single-cell RNA sequencing (scRNA-seq) is a powerful
technique that allows researchers to characterize the gene
expression profile of single cells. From each cell, mRNA
is isolated and reverse-transcribed into cDNA, which is
amplified and subjected to massively parallel sequenc-
ing [1]. The sequencing reads are mapped to a reference
genome, such that the number of reads mapped to each
gene can be used to quantify its expression. Alternatively,
transcript molecules can be counted directly using unique
molecular identifiers (UMIs) [2]. Count data can be ana-
lyzed to identify new cell subtypes and to detect highly
variable or differentially expressed (DE) genes between
cell subpopulations. This type of single-cell resolution is
not possible with bulk RNA sequencing of cellular pop-
ulations. However, the downside is that the counts often
contain high levels of technical noise with many dropouts,
i.e., zero or near-zero values. This is due to the pres-
ence of low amounts of RNA per cell, which decreases
the efficiency with which transcripts can be captured
and processed prior to sequencing. Moreover, the capture

*Correspondence: aaron.lun@cruk.cam.ac.uk; marioni@ebi.ac.uk
1Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka
Shing Centre, Robinson Way, CB2 0RE, Cambridge, UK
2EMBL European Bioinformatics Institute, Wellcome Genome Campus,
Hinxton, CB10 1SD, Cambridge, UK
Full list of author information is available at the end of the article

efficiency often varies from cell to cell, such that counts
cannot be directly compared between cells.
Normalization of the scRNA-seq counts is a critical

step that corrects for cell-to-cell differences in capture
efficiency, sequencing depth, and other technical con-
founders. This ensures that downstream comparisons of
relative expression between cells are valid. Two broad
classes of methods for scaling normalization are available:
those using spike-in RNA sets and those using the counts
from the profiled cellular RNA. In the former, the same
quantity of spike-in RNA is added to each cell prior to
library preparation [1]. Any difference in the coverage of
the spike-in transcripts must be caused by differences in
capture efficiency, amplification bias, or sequencing depth
between cells. Normalization is then performed by scaling
the counts to equalize spike-in coverage between cells. For
the methods using cellular counts, the assumption is that
most genes are not DE across the sampled cells. Counts
are scaled so that there is, on average, no fold-difference in
expression between cells for the majority of genes. This is
the underlying concept of commonly used methods such
as DESeq [3] and trimmed mean ofM values (TMM) nor-
malization [4]. An even simpler approach involves scaling
the counts to remove differences in library sizes between
cells, i.e., library size normalization.
The type of normalization that can be used depends on

the characteristics of the data set. In some cases, spike-in

© 2016 Lun et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.
org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

• Works for data without spike-in.
• The goal is to estimate a size factor for each cell. 
• The idea is to normalize on summed expression 

values from pools of cells – it’s more stable than 
using individual cell. 

• Bioconductor package scran.



• Basic idea: one normalization factor per cell 
doesn’t fit all genes. 

• Relationships of read counts and sequencing 
depths vary and depend on the expression 
levels. 
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major bias in scRNA-seq data that has not been recognized and 
reported in previous studies. Specifically, scRNA-seq data show 
systematic variation in the relationship between transcript-specific 
expression and sequencing depth (which we refer to as the count– 
depth relationship) that is not accommodated by a single scale factor 
common to all genes in a cell (Fig. 1 and Supplementary Fig. 1).  
Global scale factors adjust for a count–depth relationship that is 
assumed to be common across genes. When this relationship is not 
common across genes, normalization via global scale factors leads 
to overcorrection for weakly and moderately expressed genes and, in 
some cases, undernormalization of highly expressed genes (Fig. 1).

To address this, SCnorm uses quantile regression to estimate 
the dependence of transcript expression on sequencing depth for 
every gene. Genes with similar dependence are then grouped, and 
a second quantile regression is used to estimate scale factors within 
each group. Within-group adjustment for sequencing depth is then 
performed using the estimated scale factors to provide normal-
ized estimates of expression. Although SCnorm does not require 
experimental RNA spike-ins, performance may be improved if 
spike-ins that span the range of expression observed in endog-
enous genes are available (Supplementary Note 1).

We evaluated SCnorm and compared it with MR3, transcripts 
per million (TPM)7, scran5, SCDE8, and BASiCS6 using simulated 
and case study data. In the first simulation (SIM I), two scenarios 
are considered where the number of gene groups having different 
count–depth relationships (K) is set to one (to mimic a bulk experi-
ment) or four (Supplementary Fig. 2). Each simulated data set con-
tains two conditions, the second condition having approximately 
four times as many reads as the first; 20% of the genes are defined 
to be differentially expressed (DE). Prior to normalization, counts 
in the second condition will appear four times higher on average 
given the increased sequencing depth. If normalization for depth 
is effective, fold-change estimates should be near one, and only 
simulated DE genes should appear to be DE. When K = 1, with the 
exception of TPM, fold-change estimates are consistently robust 
among methods (Supplementary Fig. 2a), and all normalization 
methods provide data that result in high sensitivity and specifi-
city for identifying DE genes (Supplementary Fig. 2b). However, 
when K = 4, only SCnorm maintains good operating characteristics, 
whereas approaches based on global scale factors overestimate fold 
changes for weakly to moderately expressed genes on account of 
overcorrection of sequencing depth (Supplementary Fig. 2c,d).

In the second simulation (SIM II) counts are generated as in 
Lun et al.5, following their simulation study scenarios 1, 2, 3, and 
4. Briefly, scenario 1 contains no DE genes; scenarios 2, 3, and 4 
contain moderate DE, strong DE, and varying magnitudes of DE 
genes, respectively. We found that SCnorm is similar to scran with 

SCnorm: robust 
normalization of  
single-cell RNA-seq data
Rhonda Bacher1,5  , Li-Fang Chu2,5, Ning Leng2,  
Audrey P Gasch3, James A Thomson2, Ron M Stewart2, 
Michael Newton1,4   & Christina Kendziorski4

The normalization of RNA-seq data is essential for accurate 
downstream inference, but the assumptions upon which 
most normalization methods are based are not applicable  
in the single-cell setting. Consequently, applying existing 
normalization methods to single-cell RNA-seq data introduces 
artifacts that bias downstream analyses. To address this, we 
introduce SCnorm for accurate and efficient normalization of 
single-cell RNA-seq data.

Methods used to quantify mRNA abundance introduce sys-
tematic sources of variation that can obscure signals of interest. 
Consequently, an essential first step in most mRNA-expression 
analyses is normalization, whereby systematic variations are 
adjusted to make expression counts comparable across genes and/ 
or samples. Within-sample normalization methods adjust for gene-
specific features, such as GC content and gene length, to facilitate 
comparisons of a gene’s expression within an individual sample; 
whereas between-sample normalization methods adjust for sample-
specific features, such as sequencing depth, to allow for compari-
sons of a gene’s expression across samples1. In this work, we present 
a method for between-sample normalization, although we note 
that the R implementation of our method, R/SCnorm, also allows 
gene-specific features to be adjusted (Supplementary Software 
and http://www.biostat.wisc.edu/~kendzior/SCNORM/).

A number of methods are available for between-sample nor-
malization in bulk RNA-seq experiments2,3. Most of these meth-
ods calculate global scale factors (one factor is applied to each 
sample, and this same factor is applied to all genes in the sample) 
to adjust for sequencing depth. These methods demonstrate excel-
lent performance in bulk RNA-seq, but they are compromised in 
the single-cell setting because of an abundance of zero-expression 
values and increased technical variability4.

Recent methods have been developed specifically for single-cell 
RNA-seq (scRNA-seq) normalization5,6. Like bulk methods, they cal-
culate global scale factors, and therefore they cannot accommodate a  

1Department of Statistics, University of Wisconsin–Madison, Madison, Wisconsin, USA. 2Morgridge Institute for Research, Madison, Wisconsin, USA. 3Laboratory 
of Genetics, University of Wisconsin–Madison, Madison, Wisconsin, USA. 4Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, 
Madison, Wisconsin, USA. 5These authors contributed equally to this work. Correspondence should be addressed to C.K. (kendzior@biostat.wisc.edu).
RECEIVED 22 AUGUST 2016; ACCEPTED 22 MARCH 2017; PUBLISHED ONLINE 17 APRIL 2017; DOI:10.1038/NMETH.4263

BRIEF COMMUNICATIONS

584 | VOL.14 NO.6 | JUNE 2017 | NATURE METHODS

major bias in scRNA-seq data that has not been recognized and 
reported in previous studies. Specifically, scRNA-seq data show 
systematic variation in the relationship between transcript-specific 
expression and sequencing depth (which we refer to as the count– 
depth relationship) that is not accommodated by a single scale factor 
common to all genes in a cell (Fig. 1 and Supplementary Fig. 1).  
Global scale factors adjust for a count–depth relationship that is 
assumed to be common across genes. When this relationship is not 
common across genes, normalization via global scale factors leads 
to overcorrection for weakly and moderately expressed genes and, in 
some cases, undernormalization of highly expressed genes (Fig. 1).

To address this, SCnorm uses quantile regression to estimate 
the dependence of transcript expression on sequencing depth for 
every gene. Genes with similar dependence are then grouped, and 
a second quantile regression is used to estimate scale factors within 
each group. Within-group adjustment for sequencing depth is then 
performed using the estimated scale factors to provide normal-
ized estimates of expression. Although SCnorm does not require 
experimental RNA spike-ins, performance may be improved if 
spike-ins that span the range of expression observed in endog-
enous genes are available (Supplementary Note 1).

We evaluated SCnorm and compared it with MR3, transcripts 
per million (TPM)7, scran5, SCDE8, and BASiCS6 using simulated 
and case study data. In the first simulation (SIM I), two scenarios 
are considered where the number of gene groups having different 
count–depth relationships (K) is set to one (to mimic a bulk experi-
ment) or four (Supplementary Fig. 2). Each simulated data set con-
tains two conditions, the second condition having approximately 
four times as many reads as the first; 20% of the genes are defined 
to be differentially expressed (DE). Prior to normalization, counts 
in the second condition will appear four times higher on average 
given the increased sequencing depth. If normalization for depth 
is effective, fold-change estimates should be near one, and only 
simulated DE genes should appear to be DE. When K = 1, with the 
exception of TPM, fold-change estimates are consistently robust 
among methods (Supplementary Fig. 2a), and all normalization 
methods provide data that result in high sensitivity and specifi-
city for identifying DE genes (Supplementary Fig. 2b). However, 
when K = 4, only SCnorm maintains good operating characteristics, 
whereas approaches based on global scale factors overestimate fold 
changes for weakly to moderately expressed genes on account of 
overcorrection of sequencing depth (Supplementary Fig. 2c,d).

In the second simulation (SIM II) counts are generated as in 
Lun et al.5, following their simulation study scenarios 1, 2, 3, and 
4. Briefly, scenario 1 contains no DE genes; scenarios 2, 3, and 4 
contain moderate DE, strong DE, and varying magnitudes of DE 
genes, respectively. We found that SCnorm is similar to scran with 
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The normalization of RNA-seq data is essential for accurate 
downstream inference, but the assumptions upon which 
most normalization methods are based are not applicable  
in the single-cell setting. Consequently, applying existing 
normalization methods to single-cell RNA-seq data introduces 
artifacts that bias downstream analyses. To address this, we 
introduce SCnorm for accurate and efficient normalization of 
single-cell RNA-seq data.

Methods used to quantify mRNA abundance introduce sys-
tematic sources of variation that can obscure signals of interest. 
Consequently, an essential first step in most mRNA-expression 
analyses is normalization, whereby systematic variations are 
adjusted to make expression counts comparable across genes and/ 
or samples. Within-sample normalization methods adjust for gene-
specific features, such as GC content and gene length, to facilitate 
comparisons of a gene’s expression within an individual sample; 
whereas between-sample normalization methods adjust for sample-
specific features, such as sequencing depth, to allow for compari-
sons of a gene’s expression across samples1. In this work, we present 
a method for between-sample normalization, although we note 
that the R implementation of our method, R/SCnorm, also allows 
gene-specific features to be adjusted (Supplementary Software 
and http://www.biostat.wisc.edu/~kendzior/SCNORM/).

A number of methods are available for between-sample nor-
malization in bulk RNA-seq experiments2,3. Most of these meth-
ods calculate global scale factors (one factor is applied to each 
sample, and this same factor is applied to all genes in the sample) 
to adjust for sequencing depth. These methods demonstrate excel-
lent performance in bulk RNA-seq, but they are compromised in 
the single-cell setting because of an abundance of zero-expression 
values and increased technical variability4.

Recent methods have been developed specifically for single-cell 
RNA-seq (scRNA-seq) normalization5,6. Like bulk methods, they cal-
culate global scale factors, and therefore they cannot accommodate a  
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Figure 1: For each gene, median quantile regression was used to estimate the count-
depth relationship before normalization and after normalization via MR for the H1 bulk 
RNA-seq data set (panels (a) – (d)) and the DEC scRNA-seq data set (panels (e)-(h)).  
Panel (a) shows log-expression vs. log-depth and estimated regression fits for three genes 
having low, moderate, and high expression defined as median expression among non-
zero un-normalized measurements in the 10th-20th quantile, 40th-50th quantile, and 80th-90th 
quantile, respectively. Panel (b) shows densities of slopes within each of ten equally 
sized gene groups where a gene’s group membership is determined by its median 
expression among non-zero un-normalized measurements. Panels (c) and (d) show the 
same data as panels (a) and (b), respectively, but here the data are normalized via MR. 
Panels (e)-(h) are structurally identical to (a)-(d) for the DEC scRNA-seq data set.  
Qualitatively similar results are observed if slopes are calculated via generalized linear 
models (Supplementary Section S3 and Supplementary Figure S1).  
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SCnorm Solution

• Uses quantile regression to estimate the 
dependence of read counts on sequencing 
depth for every gene. 

• Genes with similar dependence are then 
grouped, and a second quantile regression is 
used to estimate scale factors within each 
group.

• Bioconductor package SCnorm. 



Batch effect correction
• Batch effect in scRNA-seq can be severe.
• It’s difficult to randomize the design, i.e., batch is often 

confounded with individual, so it causes trouble for analyzing 
data from multiple individuals (more on this later). 

• Bulk data methods such as Combat/SVA don’t work well
• There are a number of methods specifically designed for 

scRNA-seq: 
– MNN (Haghverdi et al. 2018. Nat. Biotech.)
– ZINB-WaVE (Risso et al. 2018 Nat. comm.) 
– LIGER (Welch et al. 2019. Cell)
– Harmony (Korsunsky et al. 2019 Nat. Method)
– BUSseq (Song et al. 2020. Nat. Comm.)





Data imputation

• scRNA-seq has lots of missing data (dropout).
• Imputing the missing data help the 

downstream analyses. 
• There are a number of methods: 
– SAVER (Huang et al. 2018 Nat. Methods)
– ScImpute (Li et al. 2018 Nat. Comm.)
– MAGIC (van Dijk et al. 2018 Cell)
– SCRABBLE (Peng et al. 2019 GB) 



General strategy for imputation

• The problem is similar to a “recommendation 
system”.
– First compute the similarities among genes and 

cells.
– To impute one element, borrow information from 

similar gene/cell.



Data analyses tasks

• Cell clustering
• Pseudotime construction
• Cell type identification
• Differential expression
• Rare cell type discovery
• Alternative splicing
• Allele specific expression
• RNA velocity



Cell clustering

• Perhaps the most active topic in scRNA-seq. 
• The goals include:
– Cluster cells into subgroups.
– Model temporal transcriptomic dynamics: 

reconstruct “pseudo-time” for cells. This is useful 
for understanding development or disease 
progression. 



Cell clustering methods
• Many methods available
– SC3, Seurat, TSCAN, Monocle, CIDR, … 

– Comprehensively compared in Duo et. al (2018) 
F1000 Research. 

– According to our experience: SC3 has the best 
performance, but is the slowest. 

Mu et al. Genomics Proteomics Bioinformatics (2019)



Essence of the clustering methods

involved in the biological interpretation and annota-
tion of the results. Finally, we discuss how clustering 
approaches are likely to evolve over the coming years.

What clustering strategies are available?
Many clustering algorithms are generic in the sense that 
they can be applied to any type of data that are equipped 
with a measure of distance between data points. Owing 
to the large number of genes assayed in scRNA- seq, 
that is, the high dimensionality, distances between data 
points (that is, cells) become similar, which is known 
as the ‘curse of dimensionality’19. Consequently, differ-
ences in distances tend to be small and thus not relia-
ble for identifying cell groups (FIG. 2). The application 
of feature selection and/or dimensionality reduction (FIG. 1) 
may reduce the noise and speed up calculations. Feature 
selection involves identifying the most informative 
genes, for example, the ones with the highest variance20, 
whereas dimensionality reduction, for example, prin-
cipal component analysis (PCA), projects data into a 
lower dimensional space. Many tools use variants of the 
standard methods: SC3 uses a small subset of principal 
components and pcaReduce applies PCA iteratively. 
Subsequently, distances are calculated in the lower 

dimensional space or by using only the selected genes. 
There are several different choices available, including 
Euclidean distance, cosine similarity, Pearson’s correla-
tion and Spearman’s correlation. The main advantage of 
the three latter measures is their scale invariance, that is, 
they consider relative differences in values, making them 
more robust to library or cell size differences.

Diverse types of clustering methods are availa-
ble (FIG. 3). The most popular clustering algorithm is  
k- means (FIG. 3b), which iteratively identifies k cluster 
centres (centroids), and each cell is assigned to the closest  
centroid. The standard method for k- means, known as 
Lloyd’s algorithm21, has the advantage of scaling linearly 
with the number of points, which means that it can be 
applied to large data sets. However, Lloyd’s algorithm 
is greedy, and the method is not guaranteed to find the 
global minimum. These drawbacks can be overcome 
by repeated application of k- means using different 
initial conditions or upstream processing and finding 
the consensus, as performed by SC3 (REF.22). Another 
disadvantage of k- means is its bias towards identify-
ing equal- sized clusters, which may result in rare cell 
types being hidden among a larger group. To overcome 
these issues, RaceID23 augments k- means with outlier 
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Fig. 1 | Example data analysis workflow for scRNA- seq. Overview of the workflow for the computational analysis of 
single- cell RNA sequencing (scRNA- seq) data leading up to unsupervised clustering. First, unreliable cells (and possible 
doublets) are removed through quality control. The cleaned data set is then normalized to correct for differences in read 
coverage and other technical confounders. Feature selection and dimensionality reduction isolate the most informative 
genes and strongest signals from background noise, respectively. Cell–cell distances are then calculated in the lower 
dimensional space and used to either construct a cell–cell distance graph or used directly by clustering algorithms to 
assign cells to clusters. Some methods will compute the distances before the dimensionality reduction. CPM, counts per 
million; CV, coefficient of variation; PC, principal component; RLE, relative log expression.

Feature selection
A collection of statistical 
approaches that identify and 
retain only variables that are 
most relevant to the underlying 
structure of the data set.

Dimensionality reduction
A collection of statistical 
approaches that reduces the 
number of variables in a data 
set. It often refers specifically 
to methods that recombine the 
original variables into a new set 
of non- redundant variables. 
Dimensionality reduction can 
help in identifying important 
patterns and reducing the 
amount of computations 
needed.

Greedy
An algorithm that, at each 
step, chooses the option that 
leads to the greatest reduction 
of the cost function. Greedy 
algorithms are often fast, but 
they may fail to find the 
optimal solution.

www.nature.com/nrg
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Kiselev et al. (2019) Nat. Rev. Genet.



FlowSOM was more variable, and often tended to group the 
cells into one large cluster and a few very small ones (see  
Supplementary Figure 4 for an example). One consequence of 
this was that FlowSOM often showed higher ARI values for a 
larger number of clusters, while the performance of many of 
the other methods decreased with increasing k (Supplementary  
Figure 3). These methods tended to have more equally sized  
clusters for larger numbers of clusters than the true number, 
leading to a higher disagreement between the true classification  
and the clusterings (the entropy across the range of k is shown in 
Supplementary Figure 11).

The optimal number of clusters can differ from the ”true” 
one
Above, we investigated the performance and stability of the 
methods when the true number of clusters (the number of differ-
ent labels in the partitioning considered as the ground truth) was  
imposed. Whether this number of clusters actually provided 
the highest ARI value (i.e., the best agreement with the ground 
truth) mainly depended on the difficulty of the clustering task  
(Figure 3C), and the choice of method. No method achieved 
the best performance at the annotated number of clusters in 
all the data sets, although generally, the methods reached their  
maximum performance at or near the annotated number of  
clusters. The notable exception was FlowSOM, which required 
a relatively large number of clusters to reach its maximal  
performance.

SC3, CIDR, ascend, SAFE and TSCAN all have built-in 
functionality for estimating the optimal number of clusters. In 
most cases, the estimated number was close to the true one;  
however, ascend and CIDR had a tendency to underestimate 
the number of clusters, while SC3 and TSCAN instead tended to  
overestimate the number (Supplementary Figure 12). The tendency 
of SC3 to overestimate the cluster number is consistent with a 
previous publication16. The agreement with the true partition 

at the estimated number of clusters is shown in Supplementary  
Figure 13. SC3 is still the best-performing method in this  
situation.

Inconsistent degree of similarity between methods
The similarity between each pair of methods was quantified 
by means of the ARIs for each pair of consensus clusterings 
(across the five runs of each method for each data set and number 
of clusters). Figure 4 shows a dendrogram of the methods  
obtained by hierarchical clustering based on the average ARI 
values across all data sets for the true number of clusters. The  
numbers shown at the internal nodes indicate the stability of the 
subclusters, that is, the fraction of the corresponding dendro-
grams from the individual data sets where a particular subcluster  
could be found. In general, the groupings of the methods shown 
in the dendrogram were unstable across data sets, indicated by 
the low stability fractions of all subclusters. This is consistent 
with previous studies showing generally poor concordance  
that varied across data sets20,45. Even SC3 and SC3svm had  
surprisingly different clusterings; in less than a third of the 
data sets, these two methods showed the most similar cluster-
ings. In addition, no apparent association between the similarity 
of the clusterings and the type of input or the dimension  
reduction or underlying type of clustering algorithm was seen  
(Figure 4).

Ensembles often don’t improve clustering performance
Next, we investigated whether we could improve the cluster-
ing performance by combining methods into an ensemble. For 
each pair of methods, we generated a consensus clustering and 
evaluated its agreement with the true partition using the ARI.  
In general, the performance of the ensemble was worse than the  
better of the two combined methods, and better than the worse 
of the two methods (Figure 5A), suggesting that we would 
obtain a better performance by choosing a single good clustering  
method rather than combining multiple different ones. This is 

Figure 4. Clustering of the methods based on the average similarity of their partitions across data sets, for the true number of clusters. 
Numbers on internal nodes indicate the fraction of dendrograms from individual data sets where a particular subcluster was found.
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Example codes for SC3
sce = SingleCellExperiment(

assays = list(
counts = as.matrix(counts),
logcounts = log2(as.matrix(counts) + 1)

)
)
sce = sc3_prepare(sce)
if( missing(K) ) { ## estimate number of clusters

sce = sc3_estimate_k(sce)
K = metadata(sce)$sc3$k_estimation

}

sce = sc3_calc_dists(sce)
sce = sc3_calc_transfs(sce)
sce = sc3_kmeans(sce, ks = K)
sce = sc3_calc_consens(sce)
result = colData(sce)[,1]



Example code for Seurat
seuset = CreateSeuratObject( counts )
seuset = NormalizeData(object = seuset)
seuset = FindVariableFeatures(object = seuset)
seuset = ScaleData(object = seuset)
seuset = RunPCA(object = seuset)
seuset = FindNeighbors(object = seuset)
seuset = FindClusters(object = seuset)
Result = seuset@active.ident



Pseudotime construction
• This belongs to the “clustering” category. 
• Instead of putting cells into independent, 

exchangeable groups, it orders the cells by 
underlying temporal stage (estimated). 

• Methods/tools:
– Monocle/monocle2: Trapnell et al. (2014) Nat. Biotechnol; 

Qiu et al. (2017) Nat. Methods. 
– Waterfall: Shin et al. (2015) Cell Stem Cell
– Wanderlust: Bendall et al. (2014) Cell
– TSCAN: Ji et al. (2016) NAR



Pseudotime construction method 

General steps: 
1. Select informative genes.
2. Dimension reduction of GE.
3. Cluster the cells based on reduced data. Often 

want to over-cluster them to have many groups.
4. Construct a MST (miminum spanning tree) from 

the clustering results. 
5. Map cells to the MST. 



Cell clustering for multiple samples

• When scRNA-seq data are from multiple samples, 
batch effects could have significant impact on the 
results.

• Cells from the same sample, instead of the same cell 
type form different sample, can cluster together. 

• Possible solution: 
– Remove batch effect then cluster: MNN + SC3 
– Jointly model cell type and sample effect: BAMM-SC (Sun 

et al. 2019, Nat. Comm)

• Still an open problem.  



Cell type annotation
• Another paradigm to identify cell type.
• Cell clustering: 

– Cluster cells to multiple clusters (unsupervised). then assign cell 
type for each cluster. 

• Cell type assignment:
– Directly assign each cell to a cell type.
– Requires some reference, or training data (supervised). 
– Potentially work better for data from multiple samples.
– Can incorporate the hierarchy in cell types.
– Cannot identify new cell types (restricted to the known cell 

types in the reference).  



Cell annotation methods
• Pre-train a classifier using training set first, predict labels by 

kNN/correlation/RF etc.
– scmap (Kiselev et al. 2018 Nat. Methods)
– CaSTLe (Lieberman et al. 2018 Plos One)
– Garnett (Pliner et al. 2019 Nat. Methods)
– CHETAH (Kanter et al. 2019 Nucleic Acids Research)

• Marker-based classifier
– CellAssign (Zhang et al. 2019 Nat. Methods)

• Other generic machine learning methods: SVM, LDA, RF, kNN, RF
• Comprehensively compared in Abdelaal et al. Genome Biology 2019
• Annotation performance is a trade-off between accuracy and un-

assigned rate



• Correlation based assignment
• User can specify a threshold. Cells below the threshold are 

“unassigned”

sce <- SingleCellExperiment(assays = 
list(normcounts = as.matrix(trainmat)), 
colData = DataFrame(cell_type1 = trainlabel))

logcounts(sce) <- log2(normcounts(sce) + 1)
rowData(sce)$feature_symbol <- rownames(sce)
sce <- selectFeatures(sce, suppress_plot = TRUE)

sce_test <- SingleCellExperiment(assays =
list(normcounts = as.matrix(testmat)), 
colData = DataFrame(cell_type1 = testlabel))

logcounts(sce_test) <- log2(normcounts(sce_test) + 1)
rowData(sce_test)$feature_symbol <- rownames(sce_test)

sce <- indexCluster(sce)
scmapCluster_results <- scmapCluster(projection = sce_test,

index_list = list(metadata(sce)$scmap_cluster_index))

scmap: projection of scRNA-seq data across datasets



• Adopt a hierarchical structure when assign the cells
• Allow intermediate or unassigned categories
• Especially good when cells of unknown type are encountered, 

e.g. tumor

sce_train <- SingleCellExperiment(assays = 
list(counts = as.matrix(trainmat)), 

colData = DataFrame(celltypes=trainlabel))

sce_test <- SingleCellExperiment(assays = 
list(counts = as.matrix(testmat)), 

colData = DataFrame(celltypes = testlabel))

#run classifier
test <- CHETAHclassifier(input = sce_test, ref_cells = sce_train)
test$celltype_CHETAH



Differential expression (DE)
• DE analysis is the most important task for bulk 

expression data (microarray or RNA-seq). 
• DE in scRNA-seq is a little different:
– Traditional methods test mean changes, while the 

consideration and modeling of “drop-out” event (non-
expressed) is important in sc data. 

– Considering cell types: can compare cross cell types or 
compare the same cell type cross biological conditions. 



DE methods

• SCDE (Kharchenko et al. 2014 Nat. Methods)

• MAST (Finik et al. 2015 GB)

• SC2P (Wu et al. 2018 Bioinformatics)

• Seurat and monocle also provides DE functions.

• Bulk methods (DESeq, edgeR) are sometimes 

used. 

• A comparison paper: Soneson and Robinson 

(2018) Nat. Methods



• MAST: “Model-based Analysis of Single- cell 
Transcriptomics.” 

• Bioconductor package MAST. 

METHOD Open Access

MAST: a flexible statistical framework for
assessing transcriptional changes and
characterizing heterogeneity in single-cell
RNA sequencing data
Greg Finak1†, Andrew McDavid1†, Masanao Yajima1†, Jingyuan Deng1, Vivian Gersuk2, Alex K. Shalek3,4,5,6,
Chloe K. Slichter1, Hannah W. Miller1, M. Juliana McElrath1, Martin Prlic1, Peter S. Linsley2

and Raphael Gottardo1,7*

Abstract

Single-cell transcriptomics reveals gene expression heterogeneity but suffers from stochastic dropout and
characteristic bimodal expression distributions in which expression is either strongly non-zero or non-detectable.
We propose a two-part, generalized linear model for such bimodal data that parameterizes both of these features.
We argue that the cellular detection rate, the fraction of genes expressed in a cell, should be adjusted for as a
source of nuisance variation. Our model provides gene set enrichment analysis tailored to single-cell data. It
provides insights into how networks of co-expressed genes evolve across an experimental treatment. MAST is
available at https://github.com/RGLab/MAST.

Keywords: Bimodality, Cellular detection rate, Co-expression, Empirical Bayes, Generalized linear model, Gene set
enrichment analysis

Background
Whole transcriptome expression profiling of single cells
via RNA sequencing (scRNA-seq) is the logical apex to
single cell gene expression experiments. In contrast to
transcriptomic experiments on mRNA derived from bulk
samples, this technology provides powerful multi-
parametric measurements of gene co-expression at the
single-cell level. However, the development of equally
potent analytic tools has trailed the rapid advances in
biochemistry and molecular biology, and several challenges
need to be addressed to fully leverage the information in
single-cell expression profiles.
First, single-cell expression has repeatedly been shown

to exhibit a characteristic bimodal expression pattern,

wherein the expression of otherwise abundant genes is
either strongly positive or undetected within individual
cells. This is due in part to low starting quantities of
RNA such that many genes will be below the threshold
of detection, but there is also a biological component to
this variation (termed extrinsic noise in the literature)
that is conflated with the technical variability [1–3]. We
and other groups [4–7] have shown that the proportion
of cells with detectable expression reflects both technical
factors and biological differences between samples. Re-
sults from synthetic biology also support the notion that
bimodality can arise from the stochastic nature of gene
expression [2, 3, 8, 9].
Second, measuring single cell gene expression might

seem to obviate the need to normalize for starting RNA
quantities, but recent work shows that cells scale tran-
script copy number with cell volume (a factor that af-
fects gene expression globally) to maintain a constant
mRNA concentration and thus constant biochemical re-
action rates [10, 11]. In scRNA-seq, cells of varying vol-
ume, and hence mRNA copy number, are diluted to an
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MAST for DE

• Main ideas: 
– Use log2(TPM+1) as input data

– Both dropout probability and expression level 
depends on experimental conditions.

– Model fitting with some regularization. 

– DE is based on chi-square or Wald test. 

of interest), or does it confound the treatment effect
(does it happen to co-occur with treatment)? Regardless,
the CDR-adjusted treatment estimates are interpreted as
the change in expression due to treatment, if CDR were
held constant between the two conditions.
Two other alternative uses of the CDR are of note. It is

also possible to use CDR as a precision variable (an uncorre-
lated secondary cause) by centering the CDR within each
treatment groups, which makes the CDR measurement or-
thogonal to treatment. This would implicitly assume that
the observed changes are treatment induced, while still
modeling the heterogeneity in cell volume within each treat-
ment group. An alternative approach would be to estimate
the CDR coefficient using a set of control genes assumed to
be treatment invariant, such as housekeeping or ERCC
spike-ins [25, 26] and including it as an offset to the linear
predictors in the regression. An analogous approach is
undertaken by Buettner et. al. [26]. As noted by Hicks et al.
[27], the optimal approach to handle confounding between
technical and biological effects on the CDR is to design ex-
periments with biological replicates across multiple batches.
Finally, we note that while the methodology presented here
was developed using scRNA-seq data sets, it appears ap-
plicable to other single-cell gene expression platforms
where bimodal, conditionally normal expression patterns
are seen such as single-cell RNA-seq with unique molecu-
lar identifiers.

Methods
Data sets
Data for the MAIT study were derived from a single donor
who provided written informed consent for immune re-
sponse exploratory analyses. The study was approved by
the Fred Hutchinson Cancer Research Center institutional
review board.

MAIT cell isolation and stimulation
Cryopreserved peripheral blood mononuclear cells were
thawed and stained with Aqua Live/Dead Fixable Dead Cell
Stain and the following antibodies: CD3, CD8, CD4, CD161,
Vα7.2, CD56, and CD16. CD8+ MAIT cells were sorted as
live CD3+CD8+ CD4-CD161hiVα7.2+ cells and purity was
confirmed by post-sort fluorescence-activated cell sorting
analysis. Sorted MAIT cells were divided into aliquots and
immediately processed on a C1 Fluidigm (Fluidigm, South
San Francisco, CA) machine or treated with a combination
of IL-12 (eBioscience, San Diego, CA), IL-15 (eBioscience),
and IL-18 (MBL, Worburn, MA ) at 100 ng/mL for 24 h
followed by C1 processing.

C1 processing, sequencing, and alignment
After flow sorting, single cells were captured on the Flui-
digm C1 Single-Cell Auto Prep System (C1), lysed on
chip, and subjected to reverse transcription and cDNA

amplification using the SMARTer Ultra Low Input RNA
Kit for C1 System (Clontech, Mountain View, CA). Se-
quencing libraries were prepared using the Nextera XT
DNA Library Preparation Kit (Illumina, San Diego, CA)
according to C1 protocols (Fluidigm). Barcoded libraries
were pooled and quantified using a Qubit Fluorometer
(Thermo Scientific Life Technologies, Grand Island,
NY). Single-read sequencing of the pooled libraries was
carried out either on a HiScanSQ or a HiSeq2500 se-
quencer (Illumina) with 100-base reads, using TruSeq v3
Cluster and SBS kits (Illumina) with a target depth of
>2.5 M reads. Sequences were aligned to the UCSC Hu-
man Genome Assembly version 19, gene expression
levels quantified using RSEM [28], and TPM values
loaded into R [29] for analyses. See Additional file 1 for
more details on data processing procedures.

Time-series stimulation of mouse bone-marrow derived
dendritic cells
Processed RNA-seq data (TPM) were downloaded from
the Gene Expression Omnibus [GEO: GSE41265]. Align-
ment, pre-processing, and filtering steps have been pre-
viously described [5]. Low quality cells were filtered as
described in Shalek et al. [5].

Single-cell RNA-seq hurdle model
We model the log2(TPM+ 1) expression matrix as a two-
part generalized regression model. The gene expression rate
was modeled using logistic regression and, conditioning on
a cell expressing the gene, the expression level was modeled
as Gaussian.
Given normalized, possibly thresholded (see Additional

file 1), scRNA-seq expression Y = [yig], the rate of expression
and the level of expression for the expressed cells are mod-
eled conditionally independent for each gene g. Define the
indicator Z = [zig], indicating whether gene g is expressed in
cell i (i.e., zig= 0 if yig= 0 and zig= 1 if yig > 0). We fit logistic
regression models for the discrete variable Z and a Gaussian
linear model for the continuous variable (Y | Z= 1) inde-
pendently, as follows:

logit
!
PrðZig ¼ 1Þ

"
¼ Xi β

D
g

Pr Y ig ¼ yjZig ¼ 1
! "

¼ N Xiβ
C
g ; σ

2
g

# $

The regression coefficients of the discrete component are
regularized using a Bayesian approach as implemented in
the bayesglm function of the arm R package, which uses
weakly informative priors [30] to provide sensible estimates
under linear separation (See Additional file 1 for details).
We also perform regularization of the continuous model
variance parameter, as described below, which helps to in-
crease the robustness of gene-level differential expression
analysis when a gene is only expressed in a few cells.

Finak et al. Genome Biology  (2015) 16:278 Page 10 of 13



Example codes for MAST
• Start from log TPM and biological condition 

sca <- FromMatrix(ltpm,
cData=data.frame(celltype))

cdr2 <- colSums(assay(sca)>0)
colData(sca)$cngeneson <- scale(cdr2)
thres <- thresholdSCRNACountMatrix(assay(sca), 

nbins=200, min_per_bin=30)
assays(sca) <- list(thresh=thres$counts_threshold,

tpm=assay(sca))
## fit model and perform test                                                                                        
fit <- zlm(~celltype, sca)
lrt <- lrTest(fit, "celltype")



260 | VOL.15 NO.4 | APRIL 2018 | NATURE METHODS

ANALYSIS

have important implications in practical applications. In agree-
ment with previous evaluations, methods developed for bulk 
RNA-seq analysis did not perform worse than those specifically 
developed for scRNA-seq data, but sometimes showed a stronger 
dependence on data prefiltering.

Figure 5 summarizes performance across the main evaluation 
criteria in our study. For each evaluation aspect, each method 
was classified as ‘good’, ‘intermediate’ or ‘poor’ (Online Methods). 
Although it is difficult to capture the full complexity of the evalu-
ation in a crude categorization, the table provides a convenient 
summary of our results and can be used to select an appropri-
ate method based on the criteria that are most important for a 
specific application.

The number of cells per group ranged between 6 and 400 in 
our data sets. Although these are relatively small numbers com-
pared with the thousands of cells that can be sequenced in an 
actual experiment, DE analysis is typically used to compare sets 
of homogeneous cells (for example, from given, well-defined cell 
types), and these collections are likely to be much smaller. Thus, 
we believe that the range of sample sizes considered in our com-
parisons are relevant for real applications and that it is important 
to know how the methods perform under these circumstances.

METHODS
Methods, including statements of data availability and any associ-
ated accession codes and references, are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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Figure 5 | Summary of DE method performance across all major evaluation 
criteria. Criteria and cutoff values for performance categories are available 
in the Online Methods. Methods are ranked by their average performance 
across the criteria, with the numerical encoding good = 2, intermediate = 1,  
poor = 0. NODES and SAMseq do not return nominal P values and were 
therefore not evaluated in terms of the FPR.

Soneson and Robinson (2018) Nat. Methods



Visualization

• TSNE
• UMAP



t-SNE: a useful visualization tool
• t-SNE (t-distributed stochastic neighbor embedding): 

visualize high-dimensional data on 2-/3-D map. 
• When project high-dimensional data into lower 

dimensional space, preserve the distances among data 
points. 
– This alleviate the problem that many clusters overlap on low 

dimensional space. 
• Try to make the pairwise distances of points similar in 

high and low dimension.
• This is used in almost all scRNA-seq data visualization. 
• Has “Rtsne” package on CRAN.



VAN DER MAATEN AND HINTON

 

 

(a) Visualization by t-SNE.

 

 

(b) Visualization by Sammon mapping.

 

 

(c) Visualization by Isomap.

 

 

(d) Visualization by LLE.

Figure 4: Visualizations of the Olivetti faces data set.

structure of the data. The map constructed by Sammon mapping is significantly better, since it
models many of the members of each class fairly close together, but none of the classes are clearly
separated in the Sammon map. In contrast, t-SNE does a much better job of revealing the natural
classes in the data. Some individuals have their ten images split into two clusters, usually because a
subset of the images have the head facing in a significantly different direction, or because they have
a very different expression or glasses. For these individuals, it is not clear that their ten images form
a natural class when using Euclidean distance in pixel space.

Figure 5 shows the results of applying t-SNE, Sammon mapping, Isomap, and LLE to the COIL-
20 data set. For many of the 20 objects, t-SNE accurately represents the one-dimensional manifold
of viewpoints as a closed loop. For objects which look similar from the front and the back, t-SNE
distorts the loop so that the images of front and back are mapped to nearby points. For the four
types of toy car in the COIL-20 data set (the four aligned “sausages” in the bottom-left of the t-
SNE map), the four rotation manifolds are aligned by the orientation of the cars to capture the high
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Example code for t-SNE

library(Rtsne)

tsne_model_1 = Rtsne(datamatrix,  check_duplicates=FALSE, pca=TRUE,

perplexity=30, theta=0.5, dims=3)

tsne_out = as.data.frame(tsne_model_1$Y)

pdf(”your_figure_name.pdf", width = 5, height = 5)

par(mar = c(2.4, 2.4, 0.5, 0.5), mgp = c(1.2, 0.4, 0))

plot(tsne_out$V1, tsne_out$V2,  pch = 19, cex = 0.4, col = mycolor)

legend("bottomleft", col = mycolor,  legend = uniqCT, pch = 19, 

cex = 0.5, bty = "n")

dev.off()



UMAP: a newer (and better?) 
visualization tool

• UMAP (uniform manifold approximation and projection): a 
recently developed dimension reduction tool

• “Comparing the performance of UMAP with five other tools, 
we find that UMAP provides the fastest run times, highest 
reproducibility and the most meaningful organization of cell 
clusters. ” ---- Betcht et al. 2018 Nat Biotech

• “UMAP, which is based on theories in Riemannian geometry 
and algebraic topology, has been developed, and soon 
demonstrated arguably better performance than t-SNE due to 
its higher efficiency and better preservation of continuum.” ---
- Mu et al. 2018 GBP

• Has “umap” package on CRAN.



Betcht et al. 2018 Nat Biotech 



Example code for UMAP

library(umap)

sim_umap <- umap(datamatrix)

sim_umap2 <- sim_umap$layout

colnames(sim_umap2) <- c("UMAP1", "UMAP2")

pdf(”your_figure_name.pdf", width = 5, height = 5)

par(mar = c(2.4, 2.4, 0.5, 0.5), mgp = c(1.2, 0.4, 0))

plot(sim_umap2[,1], sim_umap2[,2], pch = 19, cex = 0.4, col = mycolor)

legend("bottomleft", col = mycolor, legend = uniqCT, pch = 19, 

cex = 0.5, bty = "n")

dev.off()



Summary
• The main interests are inter-cellular heterogeneity, 

expression dynamics, cell type discovery, etc.
• Many statistical methods and computational tools for 

different biological questions. 
– Data pre-processing: normalization, batch effect, 

imputation
– Cell clustering and cell type annotation
– Differential expression


