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Background

* Most of the biological experiments are performed on
“bulk” samples, which contains a large number of

cells (millions).

 The “bulk” data measure the average signals (gene
expression, TF binding, methylation, etc.) of many
cells.

 The bulk measurement ignores the inter-cellular
heterogeneities:

— Different cell types.
— Variation among the same cell type.



Single cell biology

The study of individual cells.
The cells are isolated from multi-cellular organism.
Experiment is performed for each cell individually.

Provides more detailed, higher resolution
information.

High-throughput experiments on single cell is
possible.



Single cell sequencing

* Different types of sequencing at the single-cell level:
— DNA-seq
— ATAC-seq, ChlP-seq
— BS-seq
— RNA-seq

* Very active research field in the past few years.



Basic experimental procedure

Isolation of single cell. Techniques include
— Laser-capture microdissection (LCM)

— Fluorescence-activated cell sorting (FACS)

— Microfluidics

Open the cell and obtain DNA/mRNA/etc.
PCR amplification to get enough materials.
Perform sequencing.

Note that single cell sequencing usually has higher
error rates than bulk data.



Single cell RNA-seq (scRNA-seq)

 The most active in the single cell field.

e Scientific goals:
— Composition of different cell types in complex tissues.
— New/rare cell type discovery.

— Gene expression, alternative splicing, allele specific
expression at the level of individual cells.

— Transcriptional dynamics (pseudotime construction).

— Above can be investigated and compared spatially,
temporally, or under different biological condition.



scRNA-seq technologies

* Full-length sequencing, such as Smart-Seq/Smart-
Seq?2
— High sequencing depth
— Better at detecting low expression genes
— Good for isoform analysis, allele specific expression
* 3’ end sequencing: such as droplet-based (Drop-seq,
inDrop, 10x genomics)
— Many cells, low sequencing depth per cell
— Good for identifying cell subpopulations



Universal molecular identifier (UMI)

* Short sequence tag added to the mRNA molecular before PCR,
for reducing PCR bias.
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scCRNA-seq data preprocessing

* Sequence alignment and expression
guantification

— RNA-seq alignment software (Tophat, STAR, HISAT,
etc.) can be used

— Some commercial software, such as Cell Ranger
for 10x genomics data.



Some data characteristics

e Data is very sparse (many zeros), especially for Drop-seq data.

* Number of transcripts detected is much lower compared to
bulk RNA-seq under the same sequencing depth.
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* Bulk and aggregated single cell expressions
have good correlation.
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* Expression levels for a gene in different cells
sometimes show bimodal distribution.
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Data normalization

ScCRNA-seq is very noisy.

Spike-in data is usually available.

— Spike-ins from the external RNA Control Consortium
(ERCC) panel contains 92 synthetic spikes based on
bacterial genome with known expression level.

UMI is helpful for removing amplification noise.

A combination of spike-in and UMI can potentially be
used for data normalization.

Simple normalization (such as by sequencing depth)
for bulk RNA-seq can be applied, e.g., TPM or FPKM.



Application Note

Normalization and noise reduction for single cell RNA-seq

experiments
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e Log-transform FPKM values, denoted by x.

* Assume the expression value, y, follow Gamma distribution.

The mean of Gamma is a polynomial function of x: y = u(x).

u(x) = X, Bixt. The model is the following:
y~Gamma(y; u(x), )

* Use MLE to estimate parameters based on ERCC data. Then
the fitted model is applied to all genes to estimate

concentration.



Lun et al. Genome Biology (2016) 17:75

DOI 10.1186/513059-016-0947-7 Genome BIOlogy

Pooling across cells to normalize @

single-cell RNA sequencing data with many
zero counts

Aaron T.L.Lun'", Karsten Bach? and John C. Marioni'?3"

* Works for data without spike-in.
 The goal is to estimate a size factor for each cell.

* The idea is to normalize on summed expression
values from pools of cells — it’s more stable than
using individual cell.

* Bioconductor package scran.



SCnorm: robust
normalization of
single-cell RNA-seq data

Rhonda Bacher»>®, Li-Fang Chu?>, Ning Leng?,
Audrey P Gasch?, James A Thomson?, Ron M Stewart?,
Michael Newton!4® & Christina Kendziorski4
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e Basic idea: one normalization factor per cell
doesn’t fit all genes.

* Relationships of read counts and sequencing
depths vary and depend on the expression

levels.
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SCnorm Solution

e Uses quantile regression to estimate the
dependence of read counts on sequencing
depth for every gene.

* Genes with similar dependence are then

grouped, and a second quantile regression is
used to estimate scale factors within each

group.
* Bioconductor package SCnorm.



Batch effect correction

Batch effect in scRNA-seq can be severe.

It’s difficult to randomize the design, i.e., batch is often
confounded with individual, so it causes trouble for analyzing
data from multiple individuals (more on this later).

Bulk data methods such as Combat/SVA don’t work well

There are a number of methods specifically designed for
SscCRNA-seq:

— MNN (Haghverdi et al. 2018. Nat. Biotech.)

— ZINB-WaVE (Risso et al. 2018 Nat. comm.)

— LIGER (Welch et al. 2019. Cell)

— Harmony (Korsunsky et al. 2019 Nat. Method)

— BUSseq (Song et al. 2020. Nat. Comm.)
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Data imputation

* scRNA-seq has lots of missing data (dropout).

* Imputing the missing data help the
downstream analyses.

* There are a number of methods:
— SAVER (Huang et al. 2018 Nat. Methods)
— Sclmpute (Li et al. 2018 Nat. Comm.)
— MAGIC (van Dijk et al. 2018 Cell)
— SCRABBLE (Peng et al. 2019 GB)



General strategy for imputation

 The problem is similar to a “recommendation
system”.

— First compute the similarities among genes and
cells.

— To impute one element, borrow information from
similar gene/cell.



Data analyses tasks

Cell clustering

Pseudotime construction

Cell type identification
Differential expression



Cell clustering

* Perhaps the most active topic in scRNA-seq.
* The goals include:

— Cluster cells into subgroups.

— Model temporal transcriptomic dynamics:
reconstruct “pseudo-time” for cells. This is useful
for understanding development or disease
progression.



Cell clustering methods

* Many methods available
— SC3, Seurat, TSCAN, Monocle, CIDR, ...

— Comprehensively compared in Duo et. al (2018)
F1000 Research.

— According to our experience: SC3 has the best
performance, but is the slowest.

and robust [73]. Due to the heavy time consuming nature of
consensus clustering, a rule of thumb for unsupervised single
cell clustering 1s to use single-cell consensus clustering (SC3,
integrated in Scater [52]) when the number of cells 1s <5000
but use Seurat instead when there are more than 5000 cells.

Mu et al. Genomics Proteomics Bioinformatics (2019)



Essence of the clustering methods
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Cell clustering methods
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Example codes for SC3

sce = SingleCellExperiment (
assays = list(
counts = as.matrix(counts),
logcounts = log2(as.matrix(counts) + 1)

sce = sc3_prepare(sce)

if( missing(K) ) { ## estimate number of clusters
sce = sc3_estimate k(sce)
K = metadata(sce)$sc3$k_estimation

sce = sc3_calc _dists(sce)

sce sc3_calc_transfs(sce)

sce sc3_kmeans (sce, ks = K)
sce = sc3_calc_consens (sce)

result = colData(sce)[,1]



Example code for Seurat

seuset = CreateSeuratObject( counts )

seuset = NormalizeData(object = seuset)

seuset = FindVariableFeatures(object = seuset)
seuset = ScaleData(object = seuset)

seuset = RunPCA(object = seuset)

seuset = FindNeighbors (object = seuset)

seuset = FindClusters(object = seuset)

Result = seuset@active.ident



Pseudotime construction

This belongs to the “clustering” category.

Instead of putting cells into independent,
exchangeable groups, it orders the cells by
underlying temporal stage (estimated).

Methods/tools:

— Monocle/monocle2: Trapnell et al. (2014) Nat. Biotechnol;
Qiu et al. (2017) Nat. Methods.

— Waterfall: Shin et al. (2015) Cell Stem Cell
— Wanderlust: Bendall et al. (2014) Cell
— TSCAN: Ji et al. (2016) NAR



Pseudotime construction method

General steps:
1. Select informative genes.
2. Dimension reduction of GE.

3. Cluster the cells based on reduced data. Often
want to over-cluster them to have many groups.

4. Construct a MST (miminum spanning tree) from
the clustering results.

5. Map cells to the MST.



Cell clustering for multiple samples

When scRNA-seq data are from multiple samples,
batch effects could have significant impact on the
results.

Cells from the same sample, instead of the same cell
type form different sample, can cluster together.
Possible solution:

— Remove batch effect then cluster: MNN + SC3

— Jointly model cell type and sample effect: BAMM-SC (Sun
et al. 2019, Nat. Comm)

Still an open problem.



Cell type annotation

* Another paradigm to identify cell type.

* Cell clustering:
— Cluster cells to multiple clusters (unsupervised). then assign cell
type for each cluster.
* Cell type assignment:
— Directly assign each cell to a cell type.
— Requires some reference, or training data (supervised).
— Potentially work better for data from multiple samples.
— Can incorporate the hierarchy in cell types.

— Cannot identify new cell types (restricted to the known cell
types in the reference).



Cell annotation methods

Pre-train a classifier using training set first, predict labels by
kNN/correlation/RF etc.

— scmap (Kiselev et al. 2018 Nat. Methods)

— CaSTLe (Lieberman et al. 2018 Plos One)

— Garnett (Pliner et al. 2019 Nat. Methods)

— CHETAH (Kanter et al. 2019 Nucleic Acids Research)
Marker-based classifier

— CellAssign (Zhang et al. 2019 Nat. Methods)

Other generic machine learning methods: SVM, LDA, RF, kNN, RF
Comprehensively compared in Abdelaal et al. Genome Biology 2019

Annotation performance is a trade-off between accuracy and un-
assigned rate



scmap: projection of scRNA-seq data across datasets

* Correlation based assignment

* User can specify a threshold. Cells below the threshold are
“unassigned”

sce <- SingleCellExperiment (assays =
list (normcounts = as.matrix(trainmat)),
colData = DataFrame(cell typel = trainlabel))
logcounts (sce) <- log2(normcounts(sce) + 1)
rowData(sce)$feature _symbol <- rownames (sce)
sce <- selectFeatures(sce, suppress plot = TRUE)

sce_test <- SingleCellExperiment (assays =

list (normcounts = as.matrix(testmat)),

colData = DataFrame(cell typel = testlabel))
logcounts (sce_test) <- log2(normcounts(sce_test) + 1)
rowData(sce_test)$feature_symbol <- rownames (sce_ test)

sce <- indexCluster(sce)
scmapCluster_ results <- scmapCluster(projection = sce_test,
index_list = list(metadata(sce)$scmap cluster_ index))



CHETAH: a selective, hierarchical cell type
identification method for single-cell RNA sequencing

* Adopt a hierarchical structure when assign the cells
* Allow intermediate or unassigned categories

* Especially good when cells of unknown type are encountered,
e.g. tumor

sce_train <- SingleCellExperiment (assays =
list (counts = as.matrix(trainmat)),

colData = DataFrame(celltypes=trainlabel))

sce_test <- SingleCellExperiment (assays =
list (counts = as.matrix(testmat)),
colData = DataFrame(celltypes = testlabel))

#run classifier

test <- CHETAHclassifier(input = sce_test, ref cells = sce_train)
test$celltype CHETAH



Differential expression (DE)

* DE analysis is the most important task for bulk
expression data (microarray or RNA-seq).

 DE in scRNA-seq is a little different:

— Traditional methods test mean changes, while the
consideration and modeling of “drop-out” event (non-
expressed) is important in sc data.

— Considering cell types: can compare cross cell types or
compare the same cell type cross biological conditions.



DE methods

SCDE (Kharchenko et al. 2014 Nat. Methods)
MAST (Finik et al. 2015 GB)

SC2P (Wu et al. 2018 Bioinformatics)

Seurat and monocle also provides DE functions.

Bulk methods (DESeq, edgeR) are sometimes
used.

A comparison paper: Soneson and Robinson
(2018) Nat. Methods



Finak et al. Genome Biology (2015) 16:278

DOI 10.1186/513059-015-0844-5 Genome BIOlogy

METHOD Open Access

MAST: a flexible statistical framework for ~ ®=
assessing transcriptional changes and
characterizing heterogeneity in single-cell

RNA sequencing data

Greg Finak'", Andrew McDavid'", Masanao Yajima'", Jingyuan Deng', Vivian Gersuk?, Alex K. Shalek®*>®
Chloe K. Slichter', Hannah W. Miller', M. Juliana McElrath!, Martin Prlic', Peter S. Linsley?
and Raphael Gottardo'”

 MAST: “Model-based Analysis of Single- cell
Transcriptomics.”

* Bioconductor package MAST.



MAST for DE

* Main ideas:

— Use log2(TPM+1) as input data

— Both dropout probability and expression level
depends on experimental conditions.
logit(Pr(Zig = 1)) = X; By
Pr(Yy =lZ, = 1) = N(Xif, o?)

— Model fitting with some regularization.

— DE is based on chi-square or Wald test.



Example codes for MAST

e Start from log TPM and biological condition

sca <- FromMatrix(ltpm,
cData=data.frame(celltype))

cdr2 <- colSums(assay(sca)>0)

colData(sca)Scngeneson <- scale(cdr2)

thres <- thresholdSCRNACountMatrix(assay(sca),
nbins=200, min per bin=30)

assays(sca) <- list(thresh=thres$counts_ threshold,

tpm=assay(sca))

## fit model and perform test

fit <- zlm(~celltype, sca)

lrt <- 1lrTest(fit, "celltype")
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Visualization

* TSNE
* UMAP



t-SNE: a useful visualization tool

t-SNE (t-distributed stochastic neighbor embedding):
visualize high-dimensional data on 2-/3-D map.

When project high-dimensional data into lower

dimensional space, preserve the distances among data
points.

— This alleviate the problem that many clusters overlap on low
dimensional space.

Try to make the pairwise distances of points similar in
high and low dimension.

This is used in almost all scRNA-seq data visualization.
Has “Rtsne” package on CRAN.
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Example code for t-SNE

library(Rtsne)

tsne_model_1 = Rtsne(datamatrix, check_duplicates=FALSE, pca=TRUE,
perplexity=30, theta=0.5, dims=3)

tsne_out = as.data.frame(tsne_model_1SY)

pdf(”your_figure_name.pdf", width =5, height = 5)
par(mar =c(2.4, 2.4, 0.5, 0.5), mgp = c(1.2, 0.4, 0))
plot(tsne_out$V1, tsne_outSV2, pch =19, cex = 0.4, col = mycolor)
legend("bottomleft”, col = mycolor, legend = uniqCT, pch = 19,

cex = 0.5, bty ="n")
dev.off()



UMAP: a newer (and better?)
visualization tool

UMAP (uniform manifold approximation and projection): a
recently developed dimension reduction tool

“Comparing the performance of UMAP with five other tools,
we find that UMAP provides the fastest run times, highest
reproducibility and the most meaningful organization of cell
clusters. ” ---- Betcht et al. 2018 Nat Biotech

“UMAP, which is based on theories in Riemannian geometry
and algebraic topology, has been developed, and soon
demonstrated arguably better performance than t-SNE due to
its higher efficiency and better preservation of continuum.” ---
- Mu et al. 2018 GBP

Has “umap” package on CRAN.
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Example code for UMAP

library(umap)

sim_umap <- umap(datamatrix)

sim_umap2 <- sim_umapSlayout
colnames(sim_umap?2) <- ¢("UMAP1", "UMAP2")

pdf(”your_figure_name.pdf", width =5, height = 5)
par(mar = ¢(2.4, 2.4, 0.5, 0.5), mgp =c(1.2, 0.4, 0))
plot(sim_umap2[,1], sim_umap2|,2], pch = 19, cex = 0.4, col = mycolor)
legend("bottomleft”, col = mycolor, legend = uniqCT, pch = 19,
cex = 0.5, bty ="n")
dev.off()



Summary

* The main interests are inter-cellular heterogeneity,
expression dynamics, cell type discovery, etc.

* Many statistical methods and computational tools for
different biological questions.

— Data pre-processing: normalization, batch effect,
Imputation

— Cell clustering and cell type annotation
— Differential expression



