Why should we consider engagement of diverse communities in genetics and genomics research:

Camille Ragin, PhD, MPH Professor, Cancer Prevention and Control Program Fox Chase Cancer Center Philadelphia PA

TEMPLE HEALTH

Outline

Lecture #1: Health Disparities and Genetics

- Overview of Health Disparities
- Genetics 101 Introduction Genetic Diversity
- How the Environment and Behavior Influence Genetic Effects on Disease

Lecture #2: Genetic Diversity Effects on Disease

- Overview of Genetic Diversity and Genetic Ancestry
- Examples of How Genetic Diversity/Ancestry Influence The Biology of a Disease as well as Outcomes from Disease
- Why Engagement of Diverse Communities in Genetics and Genomics Research Matters

Lecture #1 Health Disparities and Genetics

Camille Ragin, PhD, MPH Professor, Cancer Prevention and Control Program Fox Chase Cancer Center Philadelphia PA

TEMPLE HEALTH

Disparity

Definition:

"Health Disparities are differences in the incidence, prevalence, mortality, and burden of diseases and other adverse health conditions that exist among specific population groups in the United States" (NIH)

Types of Health Disparities

Gender

Race/Ethnicity

Geography

Gender Disparities - Example

Racial Disparities – Example 1

Centers for Disease Control and Prevention CDC 24/7: Saving Lives, Protecting People™

Rate of Cancer Deaths by Race/Ethnicity, Both Sexes

All Types of Cancer, United States, 2017

Racial Disparities – Example 2

Source: SEER Program, National Cancer Institute. Incidence data are from the SEER 13 areas (http://seer.cancer.gov/registries/terms.html).

Data are age-adjusted to the 2000 US standard population using age groups: <1, 1-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, 75-79, 80-84, 85+.

Geographic Disparities – Example 1

Estimated age-standardized incidence rates (World) in 2018, all cancers, both sexes, all ages

All rights reserved. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization / International Agency for Research on Cancer concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate borderlines for which there may not yet be full agreement.

Data source: GLOBOCAN 2018 Graph production: IARC (http://gco.iarc.fr/today) World Health Organization

Geographic Disparities – Example 2

Estimated age-standardized mortality rates (World) in 2018, all cancers, both sexes, all ages

All rights reserved. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization / International Agency for Research on Cancer concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate borderlines for which there may not yet be full agreement. Data source: GLOBOCAN 2018 Graph production: IARC (http://gco.iarc.fr/today) World Health Organization

Leading Causes of Death, U.S.

Disparities exist as countries transition at rates of epidemiologic transition

2000

- 1. Heart Disease
- 2. Cancer
- 3. Stroke
- 4. COPD
- 5. Accidents (unintentional injuries)
- 6. Diabetes
- 7. Influenza & Pneum.
- 8. Alzheimer's Disease
- 9. Nephritis
- 10. Septicemia

2020

- 1. Heart disease
- 2. Cancer
- 3. Accidents (unintentional injuries)
- 4. Chronic lower respiratory diseases
- 5. Stroke (cerebrovascular diseases)
- 6. Alzheimer's disease
- 7. Diabetes
- 8. Influenza and pneumonia
- 9. Nephritis
- 10. Intentional self-harm (suicide)

1900

- 1. Influenza & Pneumonia
- 2. Tuberculosis
- 3. Heart Disease
- 4. Stroke
- 5. Diarrhea/Enteritis
- 6. Nephritis
- 7. Cancer
- 8. Accidents (unintentional Injuries)
- 9. Diphtheria
- 10. Diseases of Early Infancy

Mathers et al. Global and Regional Causes of Death: Patterns and Trends, 2000–2015

Contributing Factors for Disparities in Cancer

Genetics 101

 DNA (deoxyribonucleic acid) is the molecular basis of genetics

 Composed of individual bases, that form base pairs

DNA

- Contained in the nucleus
- Arranged in 22 chromosomes,
 plus sex chromosomes (X and/or Y)
- Two copies of each
- DNA strand in a single cell
 Stretched out 6 ft long
- Therefore, very tightly packed

Genetics 101

5' C-G-A-T-T-G-C-A-A-C-G-A-T-G-C 3' | | | | | | | | | | | | | | | | | 3' G-C-T-A-A-C-G-T-T-G-C-T-A-C-G 5'

Genetics 101

- Variation Single Nucleotide Polymorphisms (SNP), single nucleotide change within a person's DNA sequence
- Common base changes expressed in the population

Genetic Diversity

Molly Campbell. Genomics Research from Technology Networks

Genetic Diversity - Biological Differences

Inherit differences

An individuals genetic composition
 insight to the etiology of disease and other preventative or intervention methods

Cases and unrelated population controls from the same study base

Odds Ratio: 3.6 95% CI = 1.3 to 10.4

Genetic variations can impact disease association

Multi-institutional prostate cancer study of genetic susceptibility in populations of African descent

Fig. 1. Association prostate cancer and smoking dose according to GSTM1 status, overall (a) and according to place of origin (b). 1,715 cases and 2,363 controls: 467 USA; 1,168 Caribbean; 80 Africa

Other factors unique to Caribbean men may be modulating risk

-Smoking prevalence in Caribbean men is similar to AA

-Exposure to other carcinogens that may saturate the GST system, therefore becoming less available for tobacco metabolism.

Same genetic polymorphism but different risk based on behavior never smoker, 4.8-10 pack-years, 10-24 pack-years

 Same genetic polymorphism but different risk based on environment
 USA

Caribbean

Contributing Factors for Cancer Disparities is Complex

Comparative studies in diverse communities can help to disentangle influences of genetics, behavior and environment !!

Genetic Diversity - Biological Differences

Adapted from : Molly Campbell. Genomics Research from Technology Networks

- An individual's genetic composition <u>alone</u> does not provide full insight to the etiology of disease and other preventative or intervention methods
- Studying diverse community samples does!!
 - Helps to understand modulating effects of behavior and environment on disease

Lecture #2 Genetic Diversity Effects on Disease

Camille Ragin, PhD, MPH Professor, Cancer Prevention and Control Program Fox Chase Cancer Center Philadelphia PA

TEMPLE HEALTH

Outline

- Lecture #1: Health Disparities and Genetics
 Overview of Health Disparities
 - Genetics 101 Introduction Genetic Diversity
 - How the Environment and Behavior Influence Genetic Effects on Disease

Lecture #2: Genetic Diversity Effects on Disease

- Overview of Genetic Diversity and Genetic Ancestry
- Examples of How Genetic Diversity/Ancestry Influence The Biology of a Disease as well as Outcomes from Disease
- Why Engagement of Diverse Communities in Genetics and Genomics Research Matters

Genetic Variation Contributes to Diversity

- Variation Single Nucleotide
 Polymorphisms (SNP), single nucleotide
 change within a person's DNA sequence
- Common base changes expressed in the population

Genetic Diversity Around the World

nature

A Auton et al. Nature 526, 68-74 (2015) doi:10.1038/nature15393

Genetic Diversity Around the World

Population		Code	Population Color	Continental Group Color	Analysis Panel	Phase 1	Phase 3
African ancestry				-			
Esan in Nigeria	Esan	ESN			AFR		99
Gambian in Western Division, Mandinka	Gambian	GWD			AFR		113
Luhya in Webuye, Kenya	Luhya	LWK			AFR	97	99
Mende in Sierra Leone	Mende	MSL			AFR		85
Yoruba in Ibadan, Nigeria	Yoruba	YRI			AFR	88	108
African Caribbean in Barbados	Barbadian	ACB			AFR/AMR		96
People with African Ancestry in Southwest USA	African-American SW	ASW			AFR/AMR	61	61
Americas							
Colombians in Medellin, Colombia	Colombian	CLM			AMR	60	94
People with Mexican Ancestry in Los Angeles, CA, USA	Mexican-American	MXL			AMR	66	64
Peruvians in Lima, Peru	Peruvian	PEL			AMR		85
Puerto Ricans in Puerto Rico	Puerto Rican	PUR			AMR	55	104
East Asian ancestry							
Chinese Dai in Xishuangbanna, China	Dai Chinese	CDX			EAS		93
Han Chinese in Beijing, China	Han Chinese	CHB			EAS	97	103
Southern Han Chinese	Southern Han Chinese	CHS			EAS	100	105
Japanese in Tokyo, Japan	Japanese	JPT			EAS	89	104
Kinh in Ho Chi Minh City, Vietnam	Kinh Vietnamese	KHV			EAS		99
European ancestry							
Utah residents (CEPH) with Northern and Western European ancestry	CEPH	CEU			EUR	85	99
British in England and Scotland	British	GBR			EUR	89	91
Finnish in Finland	Finnish	FIN			EUR	93	99
Iberian Populations in Spain	Spanish	IBS			EUR	14	107
Toscani in Italia	Tuscan	TSI			EUR	98	107
South Asian ancestry							
Bengali in Bangladesh	Bengali	BEB			SAS		86
Gujarati Indians in Houston, TX, USA	Gujarati	GIH			SAS		103
Indian Telugu in the UK	Telugu	ITU			SAS		102
Punjabi in Lahore, Pakistan	Punjabi	PJL			SAS		96
Sri Lankan Tamil in the UK	Tamil	STU			SAS		102
Total						1092	2504

1000 Genomes Project

nature

A Auton *et al. Nature* **526**, 68-74 (2015) doi:10.1038/nature15393

Genetic Diversity Around the World

Number of Variant Sites per Genome ranges from 4 million (European) to 5 million (African)

Markers of Genetic Diversity Around the World

SNPs that can define racial groups Ancestry Informative Markers (AIMs)

Genomic Landscape: AIMs that Define African Ancestry

Distribution of AIMs in genes involved in tobacco metabolism. The genes are shown on **chromosome**.

The distribution of AIMs on chromosomes are shown by **line graph** and **heatmap**.

What are some biological effects of genetic variability?

SNPs/AIMs Can Influence Gene Expression

Molly Campbell. Genomics Research from Technology Networks

SNPs that Influence Qene Expression (eQTLs)

located in close proximity to transcription start site of genes

SNPs/AIMs as Expression Quantitative Trait Loci (eQTLs)

Nica and Dermitzakis, Philos Trans R Soc Lond B Biol Sci. 2013 Jun 19; 368(1620)

Markers of Genetic Diversity Around the World

SNPs that can define racial groups Ancestry Informative Markers (AIMs)

If some of these AIMs are eQTLs certain genes may express at different levels between populations

What if Differentially Expressed Genes are **Involved in Metabolizing Medications?**

Implications of genetic/genomic variation in communities

eQTL

7.5

What if Differentially Expressed Genes are Involved in Metabolizing Environmental Exposures?

Implications of genetic/genomic variation in communities

What are some other biological effects of genetic variability?

Lets dig a bit deeper!

Genetic diversity - Biological Differences – Disease Head and Neck Cancer - Example

African American and Poor Patients Have a Dramatically Worse Prognosis for Head and Neck Cancer

An Examination of 20,915 Patients

- HNCa patients from 1998-2002 from the Florida Registry
- 21,000 HNCa patients
- Median survival time of 40 months (whites) vs. 21 months (AA)

Multivariate predictors of outcome

- Race (OR 1.365 AA)
- Poverty (OR 1.313)
- Age
- Sex (OR 0.987 Females)
- Tumor site
- Stage
- Grade
- Treatment
- Smoking/ETOH (OR 1.336/1.309)

Determinants of head and neck cancer survival according to race

Camille C. Ragin, PhD, MPH^{1,2,*}, Scott M. Langevin, PhD, MHA², Mark Marzouk, MD³, Jennifer R. Grandis, MD³, and Emanuela Taioli, MD, PhD^{1,2}

Matched single institution retrospective study 1987-2007
 n=348 3:1 match (AA 87 / EA 261)

- Controlled for age, gender, tobacco use (pack year dose), alcohol use, socioeconomic status, insurance status and subsite site
- Relapse-free survival larynx tumors: Black vs. White patients (AdjHR = 3.36, 95% CI: 1.62-7.00)
- Factors other than socioeconomic status and access to care may contribute to poor relapse-free survival

Ragin et al, Head and Neck 2011

Implications of Genetic/Genomic Diversity on Biology of a Disease

Mutational landscape of laryngeal cancer

Diversity of the Normal Genome Diversity of the Cancer Genome

Somatic Mutation landscape differences by race (Laryngeal cancer)

	100	
Contents lists available at ScienceDirect	1000	
	G	ENOMICS
Companying		
Genomics		
		The second line
		1765 ATA
journal homenage: www.elsevier.com/locate/vgeno	kine kiesihe	

Genomics 107 (2016) 76-82

Ancestral-derived effects on the mutational landscape of laryngeal cancer

Meganathan P. Ramakodi ^{a,b,c,d}, Rob J. Kulathinal ^{b,c,d}, Yujin Chung ^{b,d}, Ilya Serebriiskii ^{e,f}, Jeffrey C. Liu^{a,g}, Camille C. Ragin^{a,c,g,h,*}

A: All patients

B: Matched – Stage III/IV, median age: 60

cig pack-year: 40(AA), 60(EA)

Ramakodi. PhD

Diversity of the Normal Genome Diversity of the Cancer Genome

Mutation frequencies of genes differed (Black vs. White)

Gene	Afr-Amr ($N = 13$)	Eur-Amr ($N = 36$)	P-value
RUNX1T1	5 (38.46%)	3 (8.33%)	0.037
TTN	5 (38.46%)	30 (83.33%)	0.007
NAV3	0 (0%)	13 (36.11%)	0.031
PIK3CA [*]	0 (0%)	12 (33.33%)	0.043
KIAA1033	3 (23.08%)	0 (0%)	0.021
ZMYM6	3 (23.08%)	0 (0%)	0.021

* Indicates known cancer driver gene from HNSCC.

Genomics 2016

- Findings suggest the genomic diversity influences mutational signatures in laryngeal cancer
- The mutational landscape of tumors in Black patients differed than in White patients
 - Somatic mutations occur at different frequencies and is related to significant differences in germline sequence by race
 - Frequency of mutations in cancer driver genes are different by race
- These observations <u>may</u> have strong implications in precision medicine

 Underscores the importance of gentic/genomic research in diverse communities

What are some other biological effects of genetic variability?

Another example?

Lets dig a bit deeper!

Implications of Genetic/Genomic Diversity on Disease Outcome

Cis-eQTLs

NCI | NHGRI

SNPs/AIMs as Expression Quantitative Trait Loci (eQTLs)

Nica and Dermitzakis, Philos Trans R Soc Lond B Biol Sci. 2013 Jun 19; 368(1620)

AIMs cis-eQTLs Influencing DNA Repair Genes

Example 2: effect of rs2272732 on POLB gene expression

- Frequency of 'A' is higher in Afr-Ams
- Allele 'A' is associated with higher expression of POLB
- Afr-Am HNC patients have higher level of *POLB* expression

Oral Cavity/Laryngeal Cancer Patients Treated with Radiotherapy/Platinum therapy

•African Americans more likely to

AA/AG genotype associated with

higher expression of DNA

polymerase beta (POLB)

Ancestry-informative Single Nucleotide Polymorphism rs227232 effects POLB gene expression

have the AA or

AG genotype

Genotype GG

Genotype AG

Oral Cavity/Laryngeal Cancer Patients Treated with Radiotherapy/Platinum therapy

Ancestry-informative Single Nucleotide Polymorphism rs227232 effects POLB gene expression Patients with the AA genotype have the lowest overall survival

- African Americans more likely to have the AA or AG genotype
- •AA/AG genotype associated with higher expression of DNA polymerase beta (*POLB*)

Oral Cavity/Laryngeal Cancer Patients Treated with Radiotherapy/Platinum therapy

Global Genetic Ancestry and Risk of Death

African genetic ancestry

Risk of death

Effect of African admixture on survival in HNSCC patients with a history of platinum-based chemotherapy and/or radiotherapy.

> **Risk of death (Overall):** 8.99 (95% CI, 1.53-52.95; P = 0.015)

Risk of death (From disease): 7.12 (95% CI, 1.46-34.77, P = 0.015),

Markers of Genetic Diversity Around the World

SNPs that can define racial groups Ancestry Informative Markers (AIMs)

Effect of genetic/genomic diversity will differ according to Populations/communities

Markers of Genetic Diversity in Black Populations

Effect of genetic/genomic diversity may also differ within Communities

Philadelphia CAP3 Study N = 573 Africa-Born Caribbean-Born **US-Born** Other African European Blackman, MPH, PhD(c); Ramakodi, PhD; Gibbs, BSc; Harlemon, PhD(c)

Genetic Diversity and Effects on Disease

Tremendous Effects

For some communities : Negative effects on disease For other communities: Positive effects on disease

Review Questions

•Q#1: Can you describe how research that does not involve diverse communities might impact or influence health disparities?

•Q#2: The two lectures highlight that disease patterns (incidence and mortality), clinical presentation, and treatment response can vary dramatically by race/ethnicity and ancestral background. Can you provide some real world examples of the positive impact that diverse studies have made in helping to reduce health disparities? Hint: review Oh et al. PLoS Med. 2015 Dec 15;12(12):e1001918. PMID: 26671224